簡易檢索 / 詳目顯示

研究生: 鄭志展
Chih-Chan Cheng
論文名稱: 應用學習曲線於小客車及軍事卡車駕駛之探討
Learning Curve Analysis of Passenger Vehicle and Military Truck Driving
指導教授: 紀佳芬
Chia-Fen Chi
石裕川
Yuh-Chuan Shih
口試委員: 黃雪玲
Sheue-Ling Hwang
江行全
Bernard C. Jiang
林久翔
Chiuhsiang Joe Lin
陳協慶
Hsieh-Ching Chen
石裕川
Yuh-Chuan Shih
紀佳芬
Chia-Fen Chi
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 60
中文關鍵詞: 學習曲線心智負荷駕駛學習高齡者大貨車
外文關鍵詞: Learning Curve, Mental workload, Driving Training, Elderly Drivers, Truck
相關次數: 點閱:223下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 學習曲線可作為評估人員學習新工作績效的有效工具,透過學習率及主觀心智負荷可比較個體的學習成效及學習差異,進而改善訓練課程之設計。本研究主要區分高齡者模擬器駕駛學習及國軍大貨車駕駛訓練等二實驗進行討論。
    高齡者模擬器駕駛實驗共招募20位受試者,其中高齡者及年輕人各10位,皆擁有小客車駕照,所有受試者操作模擬器10回合,並紀錄每回完成時間及第1、5、10回合之NASA-TLX負荷,透過學習曲線公式計算學習率與第一回完成時間。結果顯示高齡者之操作完成時間顯著較年輕人長,但兩者間的學習率無顯著差異,即高齡者學習力並未因老化而衰退,且高齡者較年輕人偏向認知學習,兩者間表現差距有縮小之傾向,另全體受試者工作負荷隨練習次數而顯著降低。學習曲線可作為高齡者模擬器駕駛能力學習效果之評估,且可納入高齡駕駛的安全規範或駕訓設計之參考,如高齡駕駛能力檢測標準之設定或駕訓課程內容是否足夠且可行。
    大貨車駕訓實驗共招募國軍40位駕訓學員,區分為17位生手及23位熟手學員兩組,紀錄每位學員5個駕訓科目各28回合的練習時間與第10、第28回合的NASA-TLX負荷,5個科目包含倒車入庫、曲巷調頭、路邊停車、曲線進退及上下坡道。結果證實學習率及主觀負荷可區別學習差異,尤其經驗不足的生手練習前後的負荷變化大,其負荷感受高低幅度大過於有經驗學員,且易受學習表現(學習率、作業完成時間)影響,故此表示有經驗的熟手學員對於作業負荷的評估會較周延正確而具參考價值。


    Learning curves can be used to determine the length of training for new workers and performance standards for a particular task. Learning rate and mental workload were found to be important measures for comparing individual differences in order to better design a training program.
    The first experiment aimed to examine the age drivers’ learning effect and workload through a driving simulator. Twenty subjects, including 10 age and 10 young adult drivers, participated in the study. They all had valid license of small vehicle. All participants drove on a simulator and the same driving route was repeated 10 times. Each finishing time was recorded and the workload assessed by NASA-TLX was evaluated after the first, fifth, and tenth practice. For each participant, these data of finishing time were used to calculate the learning rate and theoretical first finishing time (T1).
    The result showed that aging people had significant longer T1, but learning rate and workload (NASA-TXL) between aging and young people were not significantly different. Interestingly, the workload decreased with numbers of practices. Understanding the learning effect could be helpful to trainers in determining how to allocate training resources and/or schedule practices so as to optimize the training effectiveness. Notably, that of aging people having longer finishing time should be taken into account while legislating regulation, designing vehicle, and any actions for safety considerations.
    The second experiment aimed to examine the experience effect on military truck training. Forty subjects, including 17 novice and 23 experienced drivers, participated in the study. The experiment was designed to collect the total 28 repeat task completion times and subjective mental workload of five driving tasks including (a) reverse into garage, (b) 3-point turn, (c) parallel parking, (d) S-curve, and (e) up-down-hill.
    The results indicated that task completion times of truck driving can be predicted with a learning curve. Practice significantly reduced the mental workload rating. However, the novice trainees tended to have a more significant reduction because compared to experienced trainees, they tended to give greater or lower workload scores than the experienced trainees before and after practice, respectively. The current study may not be complete enough to provide guidelines for a training program, but it is adequate to suggest that learning rate and workload measure can serve as indexes for factoring in the individual differences.

    摘要 I Abstract II 致謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章、緒論 1 1.1 研究動機與目的 1 1.2 研究流程 3 第二章、文獻探討 4 2.1 學習曲線 4 2.2 高齡者模擬器駕駛學習 7 2.3 國軍大貨車駕駛教育訓練 11 2.4 學習負荷與評估 13 2.5 文獻小結 15 第三章、實驗一 高齡者駕駛模擬器訓練 17 3.1 研究方法 17 3.1.1 受試者 17 3.1.2 實驗場地及設備 18 3.1.3 實驗場景及流程 19 3.1.4 實驗設計 20 3.2 結果與討論 21 3.2.1 第一回完成時間及學習率 22 3.2.2 NASA-TLX作業負荷 24 3.2.3 討論 27 第四章、實驗二 大貨車駕駛訓練 31 4.1 研究方法 31 4.1.1 受試者 31 4.1.2 實驗設備及場地 32 4.1.3 實驗情境及流程 33 4.1.4 實驗設計 36 4.2 結果與討論 37 4.2.1 平均完成時間及學習率 37 4.2.2 NASA-TLX作業負荷 41 4.2.3 學習表現與作業負荷之關係 46 4.2.4 討論 49 第五章、結論與建議 54 5.1 高齡者模擬器駕駛學習實驗 54 5.2 國軍大貨車駕駛訓練實驗 55 第六章、參考文獻 56 作者簡介 61

    交通部運輸研究所,2005,汽車駕駛模擬系統軟硬體之擴充與測試駕駛行為實例應用之研究。
    邱士軒,2007,性別及年齡差異對汽車駕駛的情境知覺之影響,國立清華大學工業工程與工程管理學系碩士論文。
    張新立、吳宗修等,1993,現行駕駛訓練與考照制度之檢討與研究,交通部運輸研究所。
    張新立、陳忠平,2001,以小客車駕駛人觀點探討我國駕駛教育訓練成效之研究,中華民國運輸安全研討會論文集,181-190頁。
    陳冠倫,2012,銀髮族駕駛行為模式分析,南開科技大學車輛與機電產業研究所碩士論文。
    黃富順、楊國德,2011,高齡學,五南文化事業,臺北。
    董基良、黃俊仁、馮君平、林志勇、黃維信、宋文旭,2007,駕駛人員生理功能、心理因素、行為特質與交通安全之關聯性研究(1/3),交通部運研所。
    Anderson, J.R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.
    Anzanello, M. J., & Fogliatto, F. S. (2011). Learning curve models and applications: Literature review and research directions. International Journal of Industrial Ergonomics, 41(5), 573-583.
    Blancett, R. S. (2002). Learning from productivity learning curves. Research-Technology Management, 45(3), 54-58.
    Brooks, J. O., Goodenough, R. R., Crisler, M. C., Klein, N. D., Alley, R. L., Koon, B. L., Wills, R. F. (2010). Simulator sickness during driving simulation studies. Accident Analysis & Prevention, 42, 788-796.
    Brown, I. D., & Groeger, J. A. (1988). Risk perception and decision taking during the transition between novice and experienced driver status. Ergonomics, 31(4), 585-597.
    Chi, C. F., & Dewi, R. S. (2014). Matching performance of vehicle icons in graphical and textual formats. Applied ergonomics, 45(4), 904-916.
    Chi, C. F., & Lin, F. T. (1998). A comparison of seven visual fatigue assessment techniques in three data-acquisition VDT tasks. Human Factors, 40(4), 577-590.
    da Silva, F. P. (2014). Mental workload, task demand and driving performance: what relation?. Procedia-Social and Behavioral Sciences, 162, 310-319.
    Dar-el, E. M., Ayas, K., & Gilad, I. (1995). A dual-phase model for the individual learning process in industrial tasks. IIE transactions, 27(3), 265-271.
    Deery, H. A. (1999) Hazard and risk perception among young novice drivers. Journal of safety research, 30(4), 225-236
    Dorbath, L., Hasselhorn, M., & Titz, C. (2011). Aging and executive functioning: A training study on focus-switching. Frontiers in Psychology, 2, 257.
    Duncan, J., Williams, P., and Brown, I. (1991). Components of driving skill: experience does not mean expertise. Ergonomics, 34 (7), 919-937.
    Eby, D. W., Trombley, D., Molnar, L. J., and Shope, J. T., The Assessment of Older Driver's Capabilities: A Review of the Literature, Ann Arbor, Vol. 1001, 1998, 48109.
    Fitts, P. M., & Posner, M. I. (1967). Learning and skilled performance in human performance. Belmont, CA: Brock-Cole.
    Galy, E., Paxion, J., & Berthelon, C. (2018). Measuring mental workload with the NASA-TLX needs to examine each dimension rather than relying on the global score: an example with driving. Ergonomics, 61(4), 517-527.
    Globerson, S. (1980). The influence of job related variables on the predictability power of three learning curve models. AIIE Transactions, 12(1), 64-69.
    Globerson, S., Levin, N., and Shtub, A., (1989) The impact of breaks on forgetting when performing a repetitive task, IIE transactions, Vol. 21, No. 4, 376-381.
    Hancock, W.M., and Bayha, F.H., (1982) The Learning Curve. In Handbook of Industrial Engineering, Salvendy, G. (ed.), Chapter 4.3. New York: John Wiley and Sons, Inc.
    Hart, S. G. and Staveland, L. E., (1988) Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research, Advances in psychology, Vol. 52, 139-183.
    Hein, C. M. (1993). Driving simulators: Six years of hands-on experience at Hughes Aircraft Company. Proceedings of the Human Factors and Ergonomics Society 37th Annual Meeting (pp. 607-611).
    Jipp, M. (2016). Expertise development with different types of automation: A function of different cognitive abilities. Human factors, 58(1), 92-106.
    Konz, S. A. and Johnson, S, (2000) Work design: industrial ergonomics Holcomb Hathaway, Scottsdale, AZ.
    Lee, H. C., Cameron, D., & Lee, A. H. (2003). Assessing the driving performance of older adult drivers: on-road versus simulated driving. Accident Analysis & Prevention, 35(5), 797-803.
    Mayhew, D. R., and Simpson, H. M. (1995) The Role of Driving Experience: Implications for the Training and Licensing of New Drivers. Unpublished report. Insurance Bureau of Canada, Toronto, Ontario.
    McDermott, A. G.(1987). A model of training effectiveness: Individual and environmental factors influencing training outcomes. Unpublished doctoral dissertation, University of Houston.
    Meng, A., & Siren, A. (2012). Cognitive problems, self-rated changes in driving skills, driving-related discomfort and self-regulation of driving in old drivers. Accident Analysis & Prevention, 49, 322-329.
    Patten, C.J.D., Kircher, A., Ö stlund, J., Nilsson, L., Svenson, O., (2006). Driver experience and cognitive workload in different traffic environments. Accident Analysis and Prevention. 38(5), 887-94.
    Paxion, J., Galy, E., & Berthelon, C. (2014). Mental workload and driving. Frontiers in psychology, 5, 1344.
    Raymond A., (1980) Employee training and development, Journal of Personnel Training, 1980, 129-159.
    Reid, S. A., & Mirka, G. A. (2007). Learning curve analysis of a patient lift-assist device. Applied ergonomics, 38(6), 765-771.
    Richard, C. M., Campbell, J. L., & Brown, J. L. (2006). Task analysis of intersection driving scenarios: Information processing bottlenecks (No. FHWA-HRT-06-033). Turner-Fairbank Highway Research Center.
    Roenker, D. L., Cissell, G. M., Ball, K. K., Wadley, V. G., & Edwards, J. D. (2003). Speed-of-processing and driving simulator training result in improved driving performance. Human factors, 45(2), 218-233.
    Ronen, A., & Yair, N. (2013). The adaptation period to a driving simulator. Transportation research part F: traffic psychology and behaviour, 18, 94-106.
    Rubio, S., Díaz, E., Martín, J., & Puente, J. M. (2004). Evaluation of subjective mental workload: A comparison of SWAT, NASA‐TLX, and workload profile methods. Applied Psychology, 53(1), 61-86.
    Sahami, S., & Sayed, T. (2010). Insight into steering adaptation patterns in a driving simulator. Transportation Research Record: Journal of the Transportation Research Board, (2185), 33-39.
    Sahami, S., & Sayed, T. (2013). How drivers adapt to drive in driving simulator, and what is the impact of practice scenario on the research?. Transportation research part F: traffic psychology and behaviour, 16, 41-52.
    Sahami, S., Jenkins, J. M., & Sayed, T. (2009). Methodology to analyze adaptation in driving simulators. Transportation research record, 2138(1), 94-101.
    Sanders, M. S., and McCormick, E. J. (1993) Human factors in engineering and design, McGraw-Hill book company, New York.
    Seidler, R. D. (2004). Multiple motor learning experiences enhance motor adaptability. Journal of cognitive neuroscience, 16(1), 65-73.
    Seidler, R. D. (2007). Older adults can learn to learn new motor skills. Behavioural brain research, 183(1), 118-122.
    Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological review, 84(2), 127.
    Tsang, P. S., & Velazquez, V. L. (1996). Diagnosticity and multidimensional subjective workload ratings. Ergonomics, 39(3), 358-381.
    Van Leeuwen, P. M., Happee, R., & De Winter, J. C. F. (2014). Vertical field of view restriction in driver training: A simulator-based evaluation. Transportation research part F: traffic psychology and behaviour, 24, 169-182.
    Venkatesh, V., & Morris, M. G. (2000). Why don't men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS quarterly, 115-139.
    Vits, J., & Gelders, L. (2002). Performance improvement theory. International journal of production economics, 77(3), 285-298.
    Wallace, P. R. (1992). The instructional design of simulation systems for skills training in the Australian Defence Force. Canberra, ACT: Australian Government Publishing Service, 7.
    Wong, D. T., Prabhu, A. J., Coloma, M., Imasogie, N., & Chung, F. F. (2003). What is the minimum training required for successful cricothyroidotomy? A study in mannequins. Anesthesiology: The Journal of the American Society of Anesthesiologists, 98(2), 349-353.
    Wright, T. P. (1936). Factors affecting the cost of airplanes. Journal of the aeronautical sciences, 3(4), 122-128.
    Yelle, L. E. (1979). The learning curve: Historical review and comprehensive survey. Decision sciences, 10(2), 302-328.
    Young, M. S., Brookhuis, K. A., Wickens, C. D., & Hancock, P. A. (2015). State of science: mental workload in ergonomics. Ergonomics, 58(1), 1-17.

    QR CODE