簡易檢索 / 詳目顯示

研究生: 許玲音
LING-YIN HSU
論文名稱: 主動式氣壓平衡升降機台伺服控制之研究
A Study of Active Pneumatic Balanced Servo Control Lifting System
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 蔡明忠
Ming-Jong Tsai
李聯旺
Lian-Wang Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 112
中文關鍵詞: 滑動模式控制比例積分微分控制線性二次型調節器氣電整合氣壓平衡式升降機台
外文關鍵詞: Pneumatic-electro integration, Linear quadratic regulator, PID control, Sliding mode control, Pneumatic balanced lifting system
相關次數: 點閱:223下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣壓平衡式升降機台以馬達伺服定位進行垂直運動控制,並輔以氣壓缸提供之推力支撐負載平台,減輕馬達驅動負載所需耗用之功率。然而,固定氣壓之配重方式,無法適應負載之動態變化,致使馬達仍需負荷部分重力,影響機台之定位性能。
    因此,本文提出一種氣電整合系統之控制方法,以馬達伺服定位系統為主要控制系統,氣壓配重平衡系統視為子系統。馬達伺服定位之控制目的,是確保負載平台移動至設定之位置,氣壓配重之控制目的,是利用氣壓平衡重力,降低垂直運動過程之阻力,進而降低馬達耗電使電流為最小,因此採用最佳控制之線性二次型調節器設計控制器。氣電整合後,採用對於系統內外不確定性因素抗干擾性強之滑動模式控制作為研究重點。
    由定位控制之模擬及實驗結果,可得知滑動模式控制之安定時間及步階響應穩態誤差皆優於比例積分微分控制。有關主動式氣壓控制之模擬及實驗結果,比較主動式及固定式氣壓平衡配重,以主動式氣壓平衡配重之方式,馬達所需耗用之功率較小,且可縮短定位時間,改善定位性能。
    本文所提之氣電整合控制設計,兼具提昇機台定位性能及降低馬達耗電之特點,藉由主動式氣壓平衡配重之動力輔助,可於馬達耗電最小之條件下,完成馬達伺服定位之控制目的。


    The pneumatic balanced lifting system vertical motion is controlled by servo motor positioning, supplemented by pneumatic cylinder to provide the thrust to support the load platform, which aims to offset the vertical movement of gravity. The gravity issue needs to be considered to reduce the motor drive power consumption of the load required. However, the fixed pressure supply is unable to adapt to the dynamic changes in load. The motor still have to undertake part of the gravity load, and the positioning performance can not be improved.
    Therefore, this thesis presents a control method of pneumatic-electro integrated system. The servo motor positioning system is the main control system, and the pneumatic counterweight balance system is regarded as a subsystem. The purpose of servo motor positioning control is to ensure that the load platform is on the setting position. As for pneumatic control, the pneumatic counterweight balances the gravity to reduce the motion friction, and minimize the motor operating current. The pneumatic balanced controller is designed by optimal control of linear quadratic regulator. The pneumatic-electro integration controller is designed by sliding mode control, which has the property of anti-uncertainties.
    Both the simulation and experiments results show that for positioning control, the settling time and steady state error of sliding mode control are better than PID(Proportional Integral Derivative) control. As for active pneumatic control, this thesis compares fixed pressure supply with active pneumatic control. Active pneumatic counterweight balance control can lower the power consumption of the motor, and also reduce the settling time to improve the positioning performance.
    This thesis provides the pneumatic-electro integrated control design, which enhances the positioning performance and reduces the power consumption of the motor as well. With the power support of active pneumatic balanced control, the motor current consumption can be under the minimum conditions to complete the servo motor positioning control.

    第1章 緒論 1 1.1 前言 1 1.2 背景說明 2 1.3 研究動機 6 1.4 文獻回顧 8 1.5 本文架構 9 第2章 受控系統簡介及建模分析 10 2.1 機台組成 10 2.2 受控系統建模分析 15 第3章 控制理論 19 3.1 簡介PID控制理論 20 3.2 簡介滑動模式控制理論 21 3.3 改良型滑動模式控制器 31 3.4 切換帶寬斜率可變之變速趨近律 40 3.5 模糊滑動模式控制 43 3.6 最佳控制之線性二次型調節器 48 第4章 控制器設計及系統模擬 56 4.1 比例積分微分(PID)控制器 56 4.2 比例切換控制法之滑動模式控制器 57 4.3 指數趨近律之滑動模式控制器 59 4.4 變速趨近律之滑動模式控制器 62 4.5 模糊滑動模式控制器 64 4.6 比較各種控制器之模擬結果 66 4.7 氣電整合控制器之模擬結果 68 第5章 伺服定位實驗 71 5.1 實驗架構 71 5.2 比例積分微分(PID)控制器實驗結果 78 5.3 變速趨近律之模糊滑動模式控制實驗結果 79 5.4 氣電整合控制實驗結果 80 第6章 結論與未來展望 84 6.1 結論 84 6.2 未來展望 85 參考文獻 87 附錄 90 附錄A 比例積分微分(PID)控制器DSP程式 90 附錄B 模糊滑動模式控制器DSP程式 97

    [1] 陳偉捷,「氣壓平衡式之7.5代平面顯示玻璃基板升降系統設計分析及伺服定位控制之研究」,碩士論文,國立臺灣科技大學自動化及控制研究所,民國96年。
    [2] 謝宏村,「氣壓平衡式之適應性模糊滑動控制實現7.5代平面顯示玻璃基板升降系統伺服定位控制」,碩士論文,國立臺灣科技大學自動化及控制研究所,民國96年。
    [3] Gadsden, S.A., El Sayed, M., and Habibi, S.R.,” Derivation of an Optimal
    Boundary Layer Width for Smooth Variable Structure Filter”, 2011 AmericanControl Conference (ACC), pp.4922-4927 (2011).
    [4] Dinuzzo, F., and Ferrara, A.,” Higher Order Sliding Mode Controllers With
    Optimal Reaching”, IEEE Transactions on Automatic Control, Vol. 54, No. 9, pp. 2126-2136 (2009).
    [5] Tsai, Yi-Chang,and Huang, An-Chyau,” Multiple-surface Sliding Controller Design for Pneumatic Servo Systems”, Mechatronics, Vol. 18, No.9, pp.506-512 (2008).
    [6] Iglesias, E., García, Y., Sanjuan, M., Camacho, O. and Smith, C., ”Fuzzy Surface- based Sliding Mode Control”, ISA Transactions, Vol. 46, No. 1, pp.73-83 (2007).
    [7] Chen, Chieh-Li, and Chang, Ming-Hui,” Optimal Design of Fuzzy Sliding Mode
    Control: A Comparative Study”, Fuzzy Sets and Systems, Vol. 93, No.1, pp. 37-48 (1998).
    [8] Fallaha, C.J., Saad, M., Kanaan, H.Y., and Al-Haddad, K., “Sliding-Mode Robot Control With Exponential Reaching Law”, IEEE Transaction on Industrial Electronics, Vol. 58, No. 2, pp.600-610 (2011).
    [9] 陳永平、張浚林,可變結構控制設計,台北,全華科技圖書公司,民國91年。
    [10] 劉金琨,滑模變結構控制MATLAB仿真,北京,清華大學出版社,2005年。
    [11] Utkin, Vadim, Guldner, Jurgen, and Shi, J., Sliding Mode Control in Electro- mechanical Systems, CRC Press (1999).
    [12] Hung, John Y., Gao, Weibing, and Hung, C., “Variable Structure Control: ASurvey”, IEEE Transaction on Industrial Electronics, Vol. 40, No. 1, pp.2-22(1993).
    [13] Mohler, Ronald, Nonlinear Systems, Englewood Cliffs, Prentice Hall (1991).
    [14] DeCarlo, R.A., Zak, S.H., and Matthews, G.P., “Variable Structure Control of
    Nonlinear Multivariable System: A Tutorial”, Proceedings of IEEE, Vol. 76,
    No. 3, pp.212-232 (1988).
    [15] Sabanovic, A., Fridman, L, and Spurgeon, S., Variable Structure Systems :
    From Principles to Implementation, Institution of Electrical Engineers (2004).
    [16] Perruquetti, W., and Barbot, J. Pierre, Sliding Mode Control in Engineering, Marcel Dekker (2002).
    [17] 王文俊,認識Fuzzy(第三版),台北,全華科技圖書公司,民國94年。
    [18] Tanaka, K., and Wang, H. O., Fuzzy Control Systems Design and Analysis, John Wiley & Sons Inc. (2001).
    [19] Kung, C. C., and Liao, C. C., ” Fuzzy-Sliding Mode Controller Design ForTracking control of Non-Linear System”, Proceedings of American Control
    Conference, pp.180-184 (1994).
    [20] Wang, Hua O., Tanaka, Kazuo , and Griffin, Michael F., “An Approach to
    Fuzzy Control of Nonlinear System: Stability and Design Issues”, IEEE Transaction on Fuzzy Systems, Vol. 4, No. 1, pp.14-23 (1996).
    [21] Tanaka, Kazuo, and Sugeno, M., “Stability Analysis and Design of Fuzzy
    Control Systems”, Fuzzy Sets and Systems, Vol. 45, No. 2, pp.135-156 (1992).
    [22] Richter, Hanz, ”A Multi-Regulator Sliding Mode Control Strategy for OutputConstrained Systems”, Automatica, Vol. 47, No. 10, pp.2251-2259 (2011).
    [23] Janardhanan, S., and Kariwala, V., “Multirate Output Feedback Based LQ
    Optimal Discrete-Time Sliding Mode Control”, IEEE Transactions on Automatic Control, Vol. 53, No. 1, pp.367-373 (2008).
    [24] Bryson, A. E., Applied Linear Optimal Control : Examples and Algorithms. Cambridge University Press (2002).
    [25] 于浩祥、初紅霞、王希鳳等,MATLAB實用教程─控制系統仿真與應用,北京,化學工業出版社,2009年。
    [26] 夏瑋、李朝暉、常春藤等,MATLAB控制系統仿真與實例詳解,北京,人民郵電出版社,2008年。
    [27] Nguyen, T., Su, Wu-Chung, and Gajic, Z., “Output Feedback Sliding Mode
    Control for Sampled-Data System”, IEEE Transactions on Automatic Control, Vol. 55, No. 7, pp.1684-1689 (2010).
    [28] 冬雷,DSP原理及電機控制系統應用,北京,航空航天大學出版社,2007年。
    [29] Ke, J., Wang ,J. , Jia,N., Yang, L., and Wu, Q.H., “Energy Efficiency Analysis and Optimal Control of Servo Pneumatic Cylinders”, Proceedings of 2005 IEEE Conference on Control Applications, pp.541-546 (2005).
    [30] Matsubara, T., Tomoyuki, N., Hyon, S. H., and Morimoto, J., “An Optimal Control Approach for Hybrid Actuator System”, 2011 11th IEEE-RAS International Conference on Humanoid Robots, pp.300-305 (2011).
    [31] Lian, Jie, and Zhao, Jun, “Sliding Mode Control of Uncertain Switch DelaySystems via Hysteresis Switching Strategy”, International Journal of Control,
    Automation, and Systems, Vol. 8, No. 6, pp.1171-1178 (2010).
    [32] Yan, X. G., Spurgeon, Sarah K., and Edwards, Christopher, “Global Stabilization for a Class of Nonlinear Time-Delay Systems Based on Dynamical Output Feedback Sliding Mode Control”, International Journal of Control, Vol. 82, No. 12, pp.2293-2303 (2009).

    QR CODE