簡易檢索 / 詳目顯示

研究生: 陳宗傑
Chung-Chieh Chen
論文名稱: 先進流體傳動伺服系統之研究-高響應高效率泵控液壓伺服系統及氣壓-壓電伺服定位系統
THE RESEARCH OF NOVEL FLUID POWER SERVO SYSTEMS –High Response and High Efficiency Hydraulic Pump-Controlled System and High Precision Positioning Control of Pneumatic-Piezoelectric Hybrid System
指導教授: 郭中豐
Chung-Feng Kuo
江茂雄
Mao-Hsiung Chiang
口試委員: 陳義男
Chen Yih-Nan
鍾國亮
Kuo-Liang Chung
鍾清枝
Tsung Tsing-Tshih
學位類別: 博士
Doctor
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 160
中文關鍵詞: 電液泵控伺服系統AC伺服馬達氣壓-壓電伺服定位系統適應性距離基礎模糊滑動模式控制理論解耦合自組織模糊滑動控制器
外文關鍵詞: electro-hydraulic pump-controlled system, AC servomotor, pneumatic-piezoelectric hybrid system, adaptive signed-distance fuzzy controller with s, decoupling self-organizing fuzzy sliding mode co
相關次數: 點閱:360下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文第一部分之研究,旨在發展一套高響應、高能源效率的電液泵控伺服系統。傳統的液壓伺服系統中,閥控系統具有高響應之優點,但能源效率較低;而傳統泵控伺服系統雖然具有較高的能源效率,但在響應上卻遠不及閥控系統快。因此,本文研究即是以AC伺服馬達搭配定排量柱塞泵,組成一個變轉速泵控液壓伺服系統(VRS-PCS),並與變排量泵控液壓伺服系統(VD-PCS)作性能上之比較。在系統控制方面,以「適應性距離基礎之模糊滑動模式控制 (ASDFC-STFSMC)」來設計控制器。ASDFC-STFSMC 結合了「適應性距離基礎模糊控制器」與「自調適模糊滑動模式控制器」,因此可以降低規則庫的維度並且可以自動調整規則庫參數以及補償切換力,使控制器能有效處理系統的動態變化,以得到較佳的控制性能。藉由ASDFC-STFSMC控制理論來設計控制器,實現 VRS-PCS 及 VD-PCS 液壓伺服系統之位置、軌跡、速度及力量控制。經實驗驗證,VRS-PCS在系統響應及能源使用效率上有相當不錯的表現,並且比VD-PCS 有較佳之控制性能。
    本文第二部分之研究,旨在發展大行程高精度之氣壓-壓電混合定位系統,此系統將氣壓伺服系統與壓電致動器結合成為氣壓-壓電混合定位系統。由伺服氣壓缸進行大行程、高響應的粗定位,再以壓電致動器進行小行程的精密定位補償,因此可以達到大行程、高響應、高精度之目標。此一氣壓-壓電混合定位系統是一個二進一出之控制系統架構,因此在控制方面,先後採用「適應性離散可變結構控制理論 (ADVSC) 」以及「解耦合自組織模糊滑動控制器 (DSOFSMC)」來設計控制器。ADVSC 結合了自調適適應性控制及離散可變結構控制,因此控制參數可於線上自我調整,將系統推向最佳滑動平面,並且降低可變結構控制中的振顫現象。解耦合自組織模糊滑動控制器(DSOFSMC)包括一個自組織模糊滑動控制器 (SOFSMC)及一個解耦合控制器。自組織模糊滑動控制器藉由滑動平面的使用,可以大幅降低模糊規則庫的規則數及複雜度,並藉由自組織修正器的應用,彌補模糊規則庫設計時,因專家經驗不足及環境因素所造成的誤差。此外,解耦合控制器可以依據誤差及誤差變化量,於線上調整氣壓與壓電兩個子系統之權重分配,解決二進一出系統之間的耦合問題。本文所發展之氣壓-壓電混合定位系統,經實驗驗證,以ADVSC控制器控制時,於最大定位行程180mm時,可達0.1μm之定位精度。以DSOFSMC控制器控制時,於最大定位行程250mm時,可達20nm之定位精度。


    Hydraulic systems have the advantages of high power-weight ratio, large driving forces, and high robustness. However, improving the response and energy-efficiency of hydraulic servo systems are essential problems. On the other hand, pneumatic systems have the advantages of high response, less expense and cleanliness. However, the non-linearity nature of pneumatic systems restricts positioning precision. Thus, this dissertation focuses on two researches: improving the response and energy-efficiency of hydraulic servo systems, and developing a high precision positioning control pneumatic systems.
    Part I of this dissertation develops an electro-hydraulic pump-controlled system for achieving high response and high energy-efficiency. The conventional hydraulic valve-controlled systems have high response but low energy-efficiency. Hydraulic pump-controlled servo systems have high-energy efficiency. However, the conventional pump-controlled systems have lower response. Therefore, this dissertation aims to develop a high response and high-energy efficiency electro-hydraulic pump-controlled system driven by a constant displacement piston pump with a variable rotational speed AC servomotor. Furthermore, the servo performance of the variable rotational speed pump-controlled system (VRS-PCS) is investigated experimentally in comparison with that of the variable displacement pump-controlled system (VD-PCS).
    A novel adaptive signed-distance fuzzy controller with self-tuning fuzzy sliding-mode compensation (ASDFC-STFSMC) is proposed for motion control of pump-controlled systems. The ASDFC-STFSMC combines the adaptive signed-distance fuzzy control with the self-tuning fuzzy sliding-mode control scheme. Thus, fuzzy rules can be reduced in number and adjusted automatically. Furthermore, the function approximation error of equivalent controller can be compensated for improving control performance. Subsequently, the motion controls of VRS-PCS and VD-PCS controlled by ASDFC-STFSMC are implemented respectively, which experimental results clarify that the VRS-PCS realizes the performance of both high response and high energy-efficiency. In addition, the performances of VRS-PCS are superior to that of VD-PCS in the motion controls.
    Part II of this dissertation investigates a novel pneumatic-piezoelectric hybrid positioning control system that contains a pneumatic cylinder and a piezoelectric actuator combined in cascade. The pneumatic cylinder positions with high speed and large strokes. The piezoelectric actuator positions in fine strokes to compensate for the influence of friction force. Thus, the pneumatic-piezoelectric hybrid control system can achieve large strokes, high response, and high positioning precision.
    The control strategies of the pneumatic-piezoelectric hybrid positioning control system are designed and verified in experiments using adaptive discrete variable structure controls (ADVSC) and decoupling self-organizing fuzzy sliding mode controls (DSOFSMC) in sequence. The ADVSC combines self-tuning adaptive controls and discrete variable structure controls, thus the control parameters can be adapted on-line to achieve an optimum sliding surface and reduce the chattering phenomenon of variable structure control. The DSOFSMC contains a self-organizing fuzzy sliding mode control (SOFSMC) and a decoupling controller. Thus, it can decrease the fuzzy rule numbers, on-line self-organize the fuzzy rules and on-line weight the two subsystems. Subsequently, the pneumatic-piezoelectric hybrid positioning control is implemented, which experimental results clarify that, the positioning precision of the pneumatic-piezoelectric hybrid system controlled by ADVSC can reach 0.1 μm with high response for the strokes of 10 mm and 180 mm. Furthermore, the pneumatic-piezoelectric hybrid system controlled by DSOFSMC can achieve positioning precision of 20 nm with high response for stroke of 250 mm.

    Contents 中文摘要 I Abstract III Acknowledgement V Contents VI Acronyms X List of Figures XI List of Tables XV Chapter 1 Introduction 1 1.1 Introduction 1 1.2 High Response and High Efficiency Hydraulic Pump-Controlled System 1 1.3 High Precision Positioning Control of Pneumatic-Piezoelectric Hybrid System 4 1.4 Configuration of the Dissertation 6 PART I Chapter I-2 Layout of Experimental System 8 2.1 Variable Rotational Speed Pump-Controlled System8 2.2 Variable Displacement Pump-Controlled System 13 2.3 Disturbance System 17 2.4 PC-based Control System 18 Chapter I-3 Model Development of Pump-Controlled System20 3.1 Dynamic Model of Variable Rotational Speed Pump-Controlled System 20 3.1.1 Model of VRS-PCS on Position Control21 3.1.2 Model of VRS-PCS on Velocity Control23 3.1.3 Model of VRS-PCS on Force Control24 3.2 Dynamic Model of Variable Displacement Pump-Controlled System 25 3.2.1 Model of VD-PCS on Position Control27 3.2.2 Model of VD-PCS on Velocity Control29 3.2.3 Model of VD-PCS on Force Control30 Chapter I-4 Control Theory and Controller Design32 4.1 Single-Input Fuzzy Control 32 4.2 Fuzzy Sliding Mode Control 33 4.3 Signed-Distance Fuzzy Sliding Mode Control 35 4.4 Adaptive Signed-Distance Fuzzy Controller with Self-Tuning Fuzzy Sliding-Mode Compensation39 4.5 Controller Design 44 Chapter I-5 Experiments Results and Discussion49 5.1 Motion Control for VRS-PCS49 5.1.1 Positioning Control for VRS-PCS49 5.1.1.1 Positioning Control at Different Strokes with External Loading Force49 5.1.1.2 Positioning Control under Different Loading Conditions 50 5.1.2 Path Tracking Control for VRS-PCS53 5.1.2.1 Path Tracking Control for Different Strokes with External Loading Force53 5.1.2.2 Path Tracking Control under Different Loading Conditions53 5.1.3 Velocity Control for VRS-PCS56 5.1.3.1 Velocity Control for Different Velocity Targets with Loading Force56 5.1.3.2 Energy Efficiency in the Velocity Control61 5.1.3.3 Velocity Control with Different External Loading Forces64 5.1.3.4 Velocity Control with Step External Loading72 5.1.4 Force Control for VRS-PCS73 5.1.4.1 Force Control for Different Force Targets73 5.1.4.2 Energy Efficiency in the Force Control73 5.1.4.3 Force Tracking Control with Sine Wave Force Input74 5.2 Motion Control for VD-PCS81 5.2.1 Positioning Control for VD-PCS81 5.2.1.1 Positioning Control at Different Strokes with External Loading Force81 5.2.1.2 Positioning Control under Different Loading Conditions 82 5.2.2 Path Tracking Control for VD-PCS85 5.2.2.1 Path Tracking Control for Different Strokes with External Loading Force85 5.2.2.2 Path Tracking Control under Different Loading Conditions85 5.2.3 Velocity Control for VD-PCS88 5.2.3.1 Velocity Control for Different Velocity Targets with Loading Force88 5.2.3.2 Energy Efficiency in the Velocity Control 91 5.2.3.3 Velocity Control with Different External Loading Force94 5.2.3.4 Velocity Control with Step External Loading99 5.2.4 Force Control for VD-PCS100 5.2.4.1 Force Control for Different Force Targets100 Chapter I-6 Conclusion 103 PART II Chapter II-2 Layout of Experimental System 106 2.1 Pneumatic-Piezoelectric Hybrid Control System 106 Chapter II-3 Control Theory109 3.1 Adaptive Discrete Variable Structure Control109 3.1.1 Discrete Variable Structure Control109 3.1.2 Parameter Adaptive Scheme111 3.1.3 Adaptive Discrete Variable Structure Control 113 3.2 Decoupling Self-Organizing Fuzzy Sliding Mode Control 116 3.2.1 Fuzzy Sliding Mode Control116 3.2.2 Self-Organizing Fuzzy Sliding Mode Control117 3.2.3 Decoupling Controller121 Chapter II-4 Model Development and Controller Design 124 4.1 Linear Models of Pneumatic and Piezoelectric Systems124 4.2 Identification of linear models of pneumatic and piezoelectric systems127 4.3 Pneumatic and Piezoelectric Controllers130 4.3.1 Pneumatic and Piezoelectric Controllers using DVSC130 4.3.2 Pneumatic and Piezoelectric Controllers using ADVSC131 4.4 Controller Design using DSOFSMC132 Chapter II-5 Experiments Results and Discussion134 5.1 Pneumatic and Piezoelectric Controllers using ADVSC134 5.2 Pneumatic and Piezoelectric Controllers using DSOFSMC 142 5.2.1 Pneumatic System versus Pneumatic-Piezoelectric Hybrid System using DFSMC142 5.2.2 Pneumatic System versus Pneumatic-Piezoelectric Hybrid System using DFSMC and DSOFSMC145 Chapter II-6 Conclusion148 References 150 Resume 158

    PART I
    [I-1] Murrenhoff H, “ Servohydrualik ” (in German), Lecture notes, RWTH Aachen University, Germany, (1998).
    [I-2] Backé, W and Feigel H-J, “Neue Möglichkeiten beim Electro-hydraulischen Load-Sensing” (in German), O+P Ölhydraulik und Pneumatik 34, No.2, (1990), pp. 106-114.
    [I-3] Esders H, “Elektrohydraulisches Load-Sensing für Mobile Anwendungen”, (in German), O+P Ölhydraulik und Pneumatik 36, Nr.8, (1994), pp.473-480.
    [I-4] Kim S-D, Cho H-S and Lee C-O, “Stability Analysis of a Load-Sensing Hydraulic System”, Proc. of the Institute of Mechanical Engineers, Part A: Power and Process Engineering, Vol.202, No.A2, (1988), pp.79-88.
    [I-5] Chiang M-H and Chien Y-W, “Parallel control of velocity control and energy-saving control on a hydraulic valve controlled system using self-organizing fuzzy sliding mode control”, JSME International Journal, Series C, Vol.46, No.1, (2003), pp.224-231.
    [I-6] Chiang M-H, Lee L-W, Tsai J-J, “Concurrent implementation of high velocity control performance and high energy-efficiency for hydraulic injection moulding machines”, International Journal of Advanced Manufacturing Technology, 23, (2004), pp.256–262.
    [I-7] Chiang M-H, Yang F-L, Chen Y-N and Yeh Y-P, “Integrated control of clamping force and energy-saving in hydraulic injection moulding machines using decoupling sliding-mode control”, International Journal of Advanced Manufacturing Technology ,Vol.27, (2005), pp.53-62.
    [I-8] Helduser S, “Moderne hydraulische Antriebe und Steuerungen am Beispiel von Kunststoff-Spritgiessmaschinen” (in German), O+P Ölhydraulik und Pneumatik 39, No.10, (1995).
    [I-9] Ruhlicke I, “Elektro-hydraulische Antriebssysteme mit drehzahlveränderbarer Doppelpumpe”, (in German), O+P Ölhydraulik und Pneumatik 41, No.10, (1997).
    [I-10]Kazmeier B and Feldmann D-G, “Ein neues Konzept füreinen kompakten elektrohydraulischen Linearantrieb” (in German), Proc. of 1. International Fluid Power Conference (1.IFK), Aachen, Germany, Band 1, (1998), pp.345-358.
    [I-11]Bildstein A, “Application of electro-hydrostatic actuators (EHA) for future aircraft primary flight control”, Proc. of the 1. International Fluid Power Conference (1.IFK), Aachen, Germany, Band 1, (1998), pp.93-105.
    [I-12]Helduser S, “Electric-hydrostatic drive – an innovative energy-saving power and motion control system”, Proc. of Institution of Mechanical Engineers, Vol. 213, Part I, (1999), pp.427-439.
    [I-13]Habibi S and Goldenberg A, “Design of a new high performance electro-hydraulic actuator”, Proc. of the 1999 IEEE/ASME International Conference on Advanced Mechatronics, Atlanta, USA, (1999), pp.227-232.
    [I-14]Helbig A, “Injection moulding machine with electric-hydrostatic drives”, Proc. of the 3. International Fluid Power Conference (3. IFK), Aachen, Germany, Vol.1, (2002), pp.67-82.
    [I-15]Sanner R-M, Slotine J-J, “Gaussian Network for Direct Adaptive Control”, IEEE Trans. Neural Neworks., vol. 3, pp. 837-863, 1992.
    [I-16]Wang L-X, “Stable Adaptive Fuzzy Control of Nonlinear Systems”, IEEE Trans. Fuzzy System 1, pp. 146-155, 1993.
    [I-17]Palm R., “Sliding Mode Fuzzy Control”, Automatica, vol. 30, pp.1429–1437, 1994.
    [I-18]Hwang G-C, Chang S, “A Stability Approach to Fuzzy Control Design for Nonlinear System”, Fuzzy Sets and Systems., vol. 48, pp.279–287, 1992.
    [I-19]Choi B-J, Kwak S-W, and Kim B-K “Design of a single-input fuzzy logic controller and its properties”, Fuzzy Sets and Systems pp.299-308 (1999).
    [I-20]Kim S-W and Lee J-J, “Design of a Fuzzy Controller with Fuzzy Sliding Surface”, Fuzzy Sets and Systems, Vol.71, No.3, (1995), pp.359-67.
    [I-21]Tzafestas S-G. and Rigatos G-G, “A Simple Robust Sliding Mode Fuzzy-Logic Controller of the Diagonal Type”, Journal of Intelligent & Robotic Systems, Vol.26, No.3-4, (1999), pp. 353-388.
    [I-22]Wu J-C and Liu T-S, “A Sliding-Mode Approach to Fuzzy Control Design”, IEEE Trans. Control Systems Technology, vol.4, no.2, (1996), pp. 141-151.
    [I-23]Choi B-J, Kwak S-W and Kim B-K, “Design and Stability Analysis of Single-Input Fuzzy Logic Controller”, IEEE Trans. Syst., Man, and Cybern.-Part B: Cybern, Vol. 30:2, (2000), pp. 303-309.
    [I-24]A. Isidori, Nonlinear Control Systems, 2nd ed. Berlin, Germany: Springer-Verlag, 1989.
    [I-25]J. J. E., Slotine and Li W., Applied Nonlinear Control, Englewood Cliffs,New Jersey: Prentice-Hall, 1991.
    [I-26]Slotine. J-E and Coetess. J-A, “Adaptive sliding controller synthesis for nonlinear systems”, Int. J. Control, Syst.,Vol.43(6),pp.1631-1651,1986.
    [I-27]Lee H. and Tomizuka M., “Robust adaptive control using a universal approximator for SISO nonlinear systems”, IEEE Trans. Fuzzy Syst., vol. 8, pp. 95-106, Feb. 2001.
    [I-28]Lovrec D, Kastrevc M and Ulaga S, “Electro-hydraulic load sensing with a speed-controlled hydraulic supply system on forming-machines”, International Journal of Advanced Manufacturing Technology, Published online: 5 June 2008.
    [I-29]Renn, J-C and Tsai C, “Development of an unconventional electro-hydraulic proportional valve with fuzzy-logic controller for hydraulic presses”, International Journal of Advanced Manufacturing Technology, Vol.26, No.1, (2005), pp.10-16.
    [I-30]Choi B-J, Kwak S-W and Kim B-K, “Design of a single-input fuzzy logic controller and its properties”, Fuzzy Sets and Systems pp.299-308, 1999.
    [I-31]Murrenhuff H., “Innovation in der Fluidtechnik”, (in German), Proc. of 1. International Fluid Power Conference (1. IFK), Aachen, Germany, Band 1, pp.22-58, 1998.
    [I-32]Nerbert Th, “Elektro-hydraulische Antriebssyetme mit dreizahlveraenderbaren Pumpen” (in German), Proc. of the 1. International Fluid Power Conference (1. IFK), , Aachen, Germany, Band 1, pp.287-300, 1998.
    [I-33]Yang, F-L, Chiang M-H, Wu C-N, Kuo C-H, Chen Y-N and Yeh Y-C, ” Study on Force Control and Load-Sensing Control of a Hydraulic Valve-Controlled Cylinder Systems with Decoupling Self-Organizing Fuzzy Sliding Mode Controller”, Bulletin of the College of Engineering, N.T.U., No. 92, June 2004, pp. 21–34 (EI)
    [I-34]Chiang M-H, Yu D-D and Lee L-W, “Parallelregelung der Bahnsteuerung mit Energiesparungsregelung für einen ventilgesteuerten hydraulischen Zylinderantrieb mit robustem H∞-optimalem Regler”, (Robust H∞ optimal Control for Parallel Control of Path Control and Energy-Saving Control on Hydraulic Throttle-Controlled Systems), Ölhydraulik und Pneumatik. 2/2005, 2005.
    [I-35]Chiang M-H, Lee L-W, Yeh Y-C and Sheng S-T, “Concurrent Control of Velocity-Force Control and Energy-Saving Control in Hydraulic Valve-Controlled Cylinder Systems”, The 6th JFPS International Symposium of Fluid Power, Tsukuba, Japan (2005).
    [I-36]Chiang M-H and Yeh I-C, “Parallel Control of Path Control and Energy-Saving Control for a Hydraulic Valve-Controlled Cylinder System Using Decoupling Fuzzy Sliding Mode Control”, The 13rd National Conference on Automation Technology, Taipei, Taiwan. (Jun. 2004).
    [I-37]Chiang M-H and Yeh Y-P, ”解耦合自組織模糊滑動模式控制應用於閥控液壓缸系統變排量節能控制與速度控制之平行控制研究”, The 20th National Conference on Mechanical Engineering of the Chinese Society of Mechanical Engineers, Taipei, Taiwan (2003).
    [I-38]Chiang M-H and Chien Y-W, “Adaptive Robust Control for Integration of Path Control and Energy-Saving Control on a Hydraulic Valve Controlled System”, The 19th National Conference on Mechanical Engineering of the Chinese Society of Mechanical Engineers, Yun-Lin, Taiwan.
    [I-39]Chiang M-H and Chien Y-W, ” Integration of path control and load-sensing control on a hydraulic valve controlled system”, The 3rd International Fluid Power Conference (3. IFK), Aachen, Germany (2002).
    [I-40]Chiang M-H and Lee L-W, “ Control with Genetic Algorithm on Integration of Energy-saving Control and Velocity Control of a Hydraulic Valve-Controlled System”, The 18th National Conference on Mechanical Engineering of the Chinese Society of Mechanical Engineers, Taipei, Taiwan (2001).
    [I-41]Chiang M-H, Yu D-J, “Study on Adaptive Neural Fuzzy Control for Electro-hydraulic Load-sensing System”, 2001 Automatic Control Conference, Taoyuen, Taiwan (2001).
    [I-42]Chiang M-H, Wang T-L, “A Study of Control for Electro-Hydraulic Load-Sensing System”, The 17th National Conference on Mechanical Engineering of the Chinese Society of Mechanical Engineers, Kaoshiung, Taiwan (2000).
    [I-43]Chen Y-N, C.B., and Tseng C-H, “A Variable–structure Controller Design for an Electro-hydraulic Force control Servo System”, Journal of the Chinese Society Mechanical Engineers, 11(6), pp.520-526,1990.
    [I-44]Alleyne A, and Hedrick J-K, “Nonlinear Adaptive Control of Active Suspensions”, IEEE Transaction on Control Systems Technology, pp.94-102,1995.
    [I-45]Alleyne A and Liu R, “A Simplified Approach to Force Control for Electro-hydraulic Systems”, Control Engineering Practice 8, pp. 1347-1356, 2000.
    [I-46]陳鳳珊,”具有適應性插入模糊規則之滑動模式控制器設計” 大同大學,電機所,2000年。
    [I-47]李聯旺,”結合基因演算法與 控制整合閥控液壓缸系統節能控制與伺服控制之研究”,國立台灣科技大學碩士論文,2001年。
    [I-48]蔡金江,”適應性強健控制應用於整合閥控液壓缸系統之變轉速節能控制與伺服控制之研究”,國立台灣科技大學碩士論文,2002年。
    [I-49]葉永培,”解耦合自組織模糊滑動平面控制應用於閥控液壓缸系統變排量節能控制與伺服控制之整合控制研究”,國立台灣科技大學碩士論文,2003年。
    [I-50]王明堯,”整合閥控液壓缸系統之負載壓力控制與變轉速節能控制之研究”,國立台灣科技大學碩士論文,2003年。
    [I-51]沈士棠,”閥控液壓缸系統節能控制與伺服控制之智慧型平行控制”,國立台灣科技大學碩士論文,2004年。
    [I-52]Navid Niksefat and Nariman Sepehri,“Designing Robust Force Control of Hydraulic Actuators Despite System and Environmental Uncertainties”,IEEE,2001.
    [I-53]Zadeh L- A, ”Fuzzy sets”, Information and control, Vol. 8, pp. 338-353, 1965.
    [I-54]Mamdani E-H and Assilian S, “A Fuzzy Logic Controller for a Dynamic Plant”, Int. J. Man, Maching Study,7,pp.1-13,1975
    [I-55]Kim S-W and Lee J-J, “ Design of a fuzzy controller with fuzzy sliding surface“, Fuzzy Sets & Systems, vol.71, no.35, pp.359-67, 12 May1995.
    [I-56]Lo J-C, and Kuo Y-H, “Decoupled Fuzzy Sliding-Mode Control“, IEEE Trans. on Fuzzy Systems,Vol.6,No.3, August1998,pp.426-435
    [I-57]Shiu J-F and Lin C-M, “Decoupled Fuzzy Controller Designed with Fuzzy Sliding Surface”, Automatic control Conference, pp.463-468, 2000.
    [I-58]Kim S-W, and Lee J-J, “ Design of a fuzzy controller with fuzzy sliding surface“, Fuzzy Sets & Systems, vol.71, no.35, pp.359-67, 12 May1995.
    [I-59]Sanner R-M, Slotine J-J, “Gaussian Network for Direct Adaptive Control”, IEEE Trans. Neural Networks.,Vol.3,pp.837-863,1992.
    [I-60]平野謙一,大場孝一,”最近の油压省エネシステムの動向”(in Japanese),油壓與空氣壓,第32卷,第4號,pp.225-230, 2001。
    [I-61]沢田祐造,”油压とSRモータ・インバータ技術の融合”(in Japanese),油壓與空氣壓,第32卷,第5號,pp.286-289, 2001。
    [I-62]姜繼海,蘇文海,劉慶和,”直驅式容積控制電液伺服系統”(中國大陸),軍民兩用技術與產品,第九期,pp.43-45,2003。
    [I-63]權龍,Neubert T,Heldruser S,”轉速可調泵直接閉環控制差動缸伺服系統的動特性”(中國大陸),機械工程學報,第39卷,第2期,pp.13-17, 2003。
    [I-64]Kung C-C, Kao T-Y, Chen T-H, ”Adaptive Fuzzy Sliding Mode Controller Design”, IEEE Trans. Fuzzy Syst., Vol. 9:2, pp. 674-679, 2002.
    [I-65]Fung R-F and Yang R-T, ”Application of VSC in Position Control of a Nonlinear Electrohydraulic Servo System”, Computer & Structure, Vol.66, No.4,pp365-372,1998.

    PART II
    [II-1] Murrenhoff H. “Grundlagen der Fluidtechnik“, Teil 2: Pneumatik (in German). Lecture notes of RWTH Aachen, Germany, 1999.
    [II-2] Murrenhoff H, Czinki A, Jansen R, Hantke P. “Neuere Entwicklungen in der Pneumatik“ (in German). The 2nd International Fluid Power Conference (2. IFK), (Aachen, Germany), Mar. 2000; 2: 355-378.
    [II-3] Burrows C-R, ”Effect of position on the stability of pneumatic servo mechanisms”, J. Mech. Engrs. Sci., 1969; 11(6): 615-616.
    [II-4] Bowns DE, Ballard RL. “Digital computation for analysis of pneumatic actuator system”, Proc. Instr. Mech. Engrs., 1972; 186: 881-889.
    [II-5] Chiu PC, Leung TP. “Modeling and microcomputer control of a nonlinear pneumatic servomechanism”, Trans. Inst. Measurement and Control, 1988; 10: 71-78.
    [II-6] Moore PR, Thatcher TW., “Compensation in pneumatically actuated servomechanisms”. Trans. Inst. Measurement and Control, 1985; 7: 238-244.
    [II-7] Noritsugu T., “Development of PWM mode electro-pneumatic servomechanism. part II : position control of a pneumatic cylinder”, Journal of Fluid Control, 1987; 66: 65-80
    [II-8] Shih M-C, Huang Y-F. “Pneumatic servo cylinder position control using a self-tuning controller”, JSME Int. J., Series C, 1992; 35(2): 247-254.
    [II-9] Wang Y-T, Chang M-K, ”Experimental implementation of decoupling self-organizing fuzzy control to a TITO pneumatic position control system”, JSME Int. J., Series C, 1999; 42(1): 85-92.
    [II-10] Ferraresi C, Quaglia G, “High pneumatic positioner made up of two cooperating actuators”, Proc. of the 4th JHPS International Symposium on Fluid Power. (Tokyo): 1999: 131-136.
    [II-11] Fujita T, Tokashiki R, Kagawa T., “Stick-slip motion in pneumatic cylinders driven by meter-out circuit”, Proc. of the 4th JHPS International Symposium on Fluid Power. (Tokyo), 1999: 131-136.
    [II-12] Kazama T, Fujiwara M., “Experiment on frictional characteristics of pneumatic cylinders”, Proc. of the 4th JHPS International Symposium on Fluid Power. (Tokyo), 1999: 453-458.
    [II-13] Evans RB, Griesbach JS, Messner WC, “Piezoelectric microactuator for dual stage control”. IEEE Trans. on Magnetics, 1999; 35(2): 977-982.
    [II-14] Eschmann R., “Modellbildung und Simulation pneumatischer Zylinderantriebe“ (in German), Dissertation of RWTH Aachen, Germany, 1994
    [II-15] Schillings K.,“ Servopneumatishce Antriebssysteme und Handhabungsgeräte“ (in German), Dissertation of RWTH Aachen, Germany, 2000.
    [II-16] Liu Y-T and Higuchi T, ”Precision positioning device utilizing impact force of combined piezo-pneumatic actuator”, IEEE/ASME Transactions on Mechatronics, 2001, 6(4): 467-473
    [II-17] Shih M-C, Pai K-R, “ Development of the pneumatic servo control system”, Proc. of the 5th JFPS International Symposium on Fluid Power, (Nara, Japan), 2002: 11-22.
    [II-18] Li C-J, Beigi HSM, Li S and Liang J., “Non-linear piezo-actuator control by learning self-tuning regulator”, ASME, Journal of Dynamic, Systems, Measurement, and Control, 1993; 115, 720-723.
    [II-19] Han JM, Adriaens TA, Willem L de K, and Banning R., “Modelling piezoelectric actuators”, IEEE/ASME Transactions on Mechatronics, 2000, 5(4), 331-341.
    [II-20] Utkin VI., “Sliding modes in control and optimization”, Springer, 1992.
    [II-21] Hung J-Y, Gao W, Hung J-C., “Variable structure control: a survey”, IEEE Trans. on Industrial Electronics, 1993; 40(1): 2-22.
    [II-22] Furuta K., “VSS type self-tuning control”, IEEE Trans. on Industrial Electronics, 1993; 40(1): 37-44.
    [II-23] Lee O-M, Oh J-H., “Improvements on VSS-type self-tuning control for a tracking controller”, IEEE Trans. on Industrial Electronics, 1998; 45(2): 319-325.
    [II-24] Jung S-L, Huang H-S, Tzou Y-Y, “Self-tuning discrete sliding mode control of a closed-loop regulated PWM inverter with optimal sliding surface”, IEEE, Power Electronics Specialists Conference PESC '96, 1996; 2: 1506-1512.
    [II-25] Franklin GF, Powell JD, Workman ML, ”Digital control of dynamic systems”, Addison-Wesley, 1990.
    [II-26] Kollar I., “Frequency domain system identification toolbox –for use with MATLAB”, The Math Works Ltd., 1995.
    [II-27] Chen X., Leufgen M., „Erfassung des Reibverhaltens von Kolbendichtungen und deren Einfluß auf die Positionierung von pneumatischen Systemen“, O+P Ölhydraulik und Pneumatik 31, Nr. 12, 914-917, 1987.
    [II-28] Eschmann R., „Reibkräften an Pneumatik- dichtungen“, 10. Aachener Fluidtechnisches Kolloquium, Aachen, Band 3, 49-69, 1992.
    [II-29] Goedecke W.D.,“Servopneumatische Antriebesysteme“, O+P Ölhydraulik und Pneumatik 32, Nr.7, 506-510, 1988.
    [II-30] Murrenhoff H., „Grundlagen der Fluidtechnik“, Teil 2: Pneumatik Vorlesungs- undruck der RWTH Aachen, 1999.
    [II-31] Murrenhoff H, Czinki A, Jansen R, Hantke P., “Neuere Entwicklungen in der Pneumatik“, 2. Internationale Fluidtechnisches Kolloquium, Aachen, Band 2, 355-378, 2000.
    [II-32] Murrenhoff H, Boes C., Eschmann R., Mostert E., “Stand der Entwicklung in der Servopneumatien Antriebstechnik“, O+P Ölhydraulik und Pneumatik 39, Nr.4, 264-281, 1995.
    [II-33] Moore P.R., Thatcher T.W., ”Compensation in pneumatically actuated servomechanisms”, Trans. Inst. Measurement and Control, 7, 238-244, 1985.
    [II-34] Pachnicke E., Entwicklung von Methoden zur Verbesserung des Positionierverhaltens servopneumatisches Zylinderantriebe durch Mikroprozessoreinsatz, Dissertation der RWTH Aachen, 1986.
    [II-35] Schillings K., Servopneumatische Antriebssysteme und Handhabungsgerät – Modellbildung, Auslegung und Systemtechnik, Dissertation der RWTH Aachen, 2000.
    [II-36] Chiang M-H, Chen C-C, Chow D-N, “High precision pneumatic-piezoelectric hybrid positioning control using adaptive discrete variable structure control”, Mechatronics 15, 2005, pp.523-545.

    無法下載圖示 全文公開日期 2014/01/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE