簡易檢索 / 詳目顯示

研究生: 王泰權
Tai-chuan Wang
論文名稱: 使用z域方法設計Elliptic/Multi-Level微波射頻放大器
Design and Implementation of Elliptic/Multi-Level Microwave Amplifiers Using z Domain Techniques
指導教授: 徐敬文
Ching-Wen Hsue
口試委員: 黃進芳
Jhin-Fang Huang
陳一鋒
I-Fong Chen
陳國龍
none
王鴻紳
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 71
中文關鍵詞: z域放大器設計橢圓函數尤爾沃克方程式雙準位
外文關鍵詞: z domain, amplifier design, Elliptic function, Yule-walker, dual-level
相關次數: 點閱:234下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們使用z域的方式來設計微波放大器。有別於以往傳統放大器設計方式,z域技術擁有可程式化之優點。於設計之前,須挑選適合的電晶體,將此電晶體與其偏壓電路之散射參數以Z多項式表示,建立Z時域模型。設計時,首先需要定義理想的放大器設計目標響應,並根據所定義之響應,將電晶體Z域模型與適當的並聯、串聯傳輸線網路結合。最後我們利用演算法找出此放大器電路與目標響應間的最佳近似解,並且得到電路中所有傳輸線的特性阻抗。
    本論文中用z域技術搭配elliptic方程式設計了一組操作頻段在1.8 GHz ~ 2.7 GHz之微波放大器。其中elliptic相對於其他方程式具有高響應斜率的優點。另外,我們也利用Yule-walker方程式實現了一組雙準位微波放大器,此放大器於頻帶1.8Ghz ~ 2.15GHz與2.15 GHz ~ 2.7 GHz內有3-dB的增益差。雙準位放大器的實現也展示了Yule-walker方程式具有可自行定義高複雜度響應的優點。
    量測結果方面,除了S參數外,我們也量測了數個放大器特性,其中包含1-dB增益壓縮點(P1dB)、三階交調截取點(IP3)、雜訊指數(NF)與操作頻率內的群延遲(group delay).


    In this study, the z domain technique was used to design microwave amplifiers. Using z domain technique in amplifier design is quite innovative and it has the advantage of being programmable. Before the implementation of the amplifiers, the z domain model of a transistor and its bias circuit are created in z domain polynomial by using LLS (linear least squares) algorithm. In the design phase, the prototype function F(z) of the amplifier is defined first. Then, according to the zero locations of the prototype function in z plane, the input and output matching network of the amplifier can be formed by using shunt and serial transmission lines. Finally, the of the amplifier circuit is adjusted to fit the target prototype function F(z) with optimization algorithm, so that impedances of the transmission lines of matching network can be obtained.
    Two amplifiers designed with z domain technique are presented in this paper. The first amplifier is featured with frequency response of elliptic equation, which has the defined operating band from 1.8 GHz to 2.7 GHz. The second amplifier is a dual-level amplifier which is designed with the aid of Yule-Walker scheme. This amplifier shows a 3-dB difference in amplitude response in the operating band. The design of both amplifiers demonstrates the advantages of z-domain technique and Yule-Walker scheme, which leads us to define complex frequency response of an amplifier arbitrarily. The amplifier characteristics including S parameter, 1-dB gain compression point (P1dB), noise figure (NF), and group delay are measured and discussed in the thesis.

    論文摘要 Abstract 誌謝 Contents List of Figures List of Tables Chapter 1 Introduction 1.1 Motivation 1.2 Proposal 1.3 Organization of Chapters Chapter 2 z Domain Technique 2.1 Fundamental Circuits and Their Chain-Scattering Parameters 2.2 The algorithm and z domain modeling processing 2.2.1 z Domain Modeling 2.2.2 The Bias Circuit Design and z domain model of the transistors 2.3 Design of Amplifier by the Synthesis Algorithm Chapter 3 Implementation and Experimental Results of Amplifier 3.1 The design and implementation of 15-dB Amplifier with using elliptic equation 3.2 The design and implementation of dual-level amplifier with using Yule-walker scheme Chapter 4 Conclusion 4.1 Conclusion 4.2 Future Work References

    [1] D. M. Pozar, “Microwave Engineering”, 3rd Ed., John Wiley & Sons Inc, p.p.183-187, 2005
    [2] S.C. Cripps, RF Power Amplifiers for Wireless Communications, Norwood, MA: Artech House, 1999.
    [3] F. Wang, A. Yang, D. Kimball, L. Larson, and P. Asbeck, “ Design of wide-band width envelope-tracking power amplifiers for OFDM applications, “ IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1244-1255, Apr. 2005
    [4] F. Wang, D. F. Kimball, J. D. Popp, A. H. Yang, D. Y. Lie, P. M. Asbeck and L. E. Larson, “An improved power-added efficiency 19-dBm bybrid envelope elimination and restoration power amplifier for 802.11g WLAN applications,” IEEE Trans. Microw. Theory Tech., vol.54, no. 12, pp. 4086-4099, Dec. 2006.
    [5] I. Kim, Y. Y. Woo, J. Kim, J. M., J. Kim, and B. Kim,”High-efficiency hybrid EER transmitter using optimized power amplifier,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2582-2593 , Nov. 2008
    [6] K.-A. Hsieh, H.-S. Wu, K.-H. Tsai and C.-K. C. Tzuang, “A dual-band 10/24-GHz amplifier design incorporating dual-frequency complex load matching,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp. 1649-1657, June 2012
    [7] Y. Woo, Y. Yang, and B. Kim,”Analysis and experiments for high-frequency class-F inverse class-F power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 5, pp. 1969-1974, May 2006
    [8] L. H. Lu, C. W. Hsue and B. C. Chieu, “Design of Broadband Amplifier Embedded with Band-Pass Filter Using Discrete-Time Technique,” IEIC Trans. Electron., Vol. E94-C, No. 5, pp. 882-889, January, 2011.
    [9] G.. Wen, C.L. Law, Z. Shen S. Adityd, and J. Li, “Ultra low power communication HMIC amplifier for wireless applications at 2.45 GHz,” Microw. Millimeter wave Tech., pp. 267-270, Aug. 2002.
    [10] K. Nagatomo, Y. Daido, M. Shimizu, and N. Okubo, “GaAs MESFET Characterization Using Least Squares Approximation by Rational Functions,” IEEE Trans. Microwave Theory Tech., Vol. 41, No. 2, pp. 199 – 205, 1993.
    [11] C.H. Lu, H.H. Hsieh, and Y.S. Wang,”A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 685-687, Oct. 2005.
    [12] M. L. Edwards and J. H. Sinsky, “A New Criterion for Linear 2-Port Stability Using A Single Geometrically Derived Parameter”, IEEE Trans. Microwave Theory Tech., Vol. 40, No. 12, pp. 2303 – 2311, 1992.
    [13] Friedlander, B., and B. Porat, "The Modified Yule-Walker Method of ARMA Spectral Estimation," IEEE Transactions on Aerospace Electronic Systems, AES-20, No. 2, pp.158-173, March, 1984
    [14] C.K. Liou, N.K. , D.Y. Tsao, “Highly linear amplifier design using an out-of-band termination for WiMAX applications,” WiCom ’09 5th International Conference, pp. 1-3, Sept. 2009.
    [15] R. Point, M. Mendes and W. Foley, “A differential 2.4GHz switched-gain CMOS LNA for 802.11b and Blutetooth,” 2002 IEEE Conference on Radio and Wireless, pp. 221-224, Aug. 2002.
    [16] H.Y. Liao, Y.T. Lu, J.D.S. Deng, and H.K. Chiou,”Feed-forward correction technique for a high linearity WiMAX differential low noise amplifier,” Radio-Frequency Integration Technology, pp. 218-221, 2007
    [17] 3GPP TR 36.913: “Technical Specification Group Radio Access Network; Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) LTE-Advanced, ” V10.0.0, March, 2011.
    [18] H. Hashemi, and A. Hajimiri, “Concurrent multiband low-noise amplifiers – Theor, design and applications,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 1, pp. 288 – 301, Jan. 2002.
    [19] C.-W. Hsue, J.-W. Hsu, C.-H. Lu, and S.-T. Peng, “Design and implementation of microwave multi-band/multi-level filters using equal-length transmission lines and Yule–Walker scheme”, IET Microwaves, Antennas & Propagation, vol.3, lss.5, pp. 826-833, 2009
    [20] C. W. Hsue, Y. W. Chang and D. L. Miao, “Tunable Bandstop Filter Using Equal-Length Two-Section Stubs and z-DomainTechnique,” 2011 IEEE International Workshop on Electromagnetics, Applications and Student Innovation (iWEM), pp. 61 – 65, August, 2011.
    [21] 戴維志,「使用準z域與無偏壓預失真技術設計高效益低雜訊射頻放大器」,碩士論文,國立台灣科技大學,台北,2011
    [22] D. C. Chang and C. W. Hsue, “ Design and Implementation of Filters Using Transfer Functions in the z Domain,” IEEE Trans. Microwave Theory Tech., vol. 49, No.5, pp. 979 – 985 (2001).
    [23] E. C. Levi, “Complex-Curve Fitting” IRE Transaction Automatic Control, Vol. AC-4, pp.37-44, 1959
    [24] C.-W. Hsue, C.-W Ling, and W.-T Hung, “Discrete-time notch filter and its application to microwave filter,” Microwave and Optical Tech. Lett., Vol.50, issue.6, pp.1596-1600, June, 2008.
    [25] AFT-36077, www.avagotech.com

    無法下載圖示 全文公開日期 2018/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE