簡易檢索 / 詳目顯示

研究生: 戴維志
Wei-chih Tai
論文名稱: 使用準z域與無偏壓預失真技術設計高效益低雜訊射頻放大器
Design of High Efficiency and Low Distortion RF Power Amplifier Using Quasi z Domain and Bias-Free Predistortion Techniques
指導教授: 徐敬文
Ching-wen Hsue
口試委員: 張勝良
Sheng-lyang Jang
黃進芳
Jhin-fang Huang
陳國龍
Kuo-lung Chen
溫俊瑜
Jiun-yu Wen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 106
中文關鍵詞: z 域無偏壓預失真技術功率放大器
外文關鍵詞: z domian, bias-free, predistortion technique, power amplifier
相關次數: 點閱:249下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一個使用z 域和無偏壓預失真技術的功率放大器之設計。透過z域技術可以找出功率放大器的初始匹配網路架構,由於放大器的反射係數不得由z域技術所控制,所以反射係數往往不如預期的好,雖然放大器仍具有濾波且平坦的增益響應,因此,放大器必須透過微波模擬工具進行額外的最佳化使得輸入端反射係數能達到-10 dB同時維持原有的濾波增益響應,這個過程會造成匹配網路中的大部分傳輸線之電氣長度不再是λ/4,這也是題目所稱的準z域技術。
    一個2瓦特和10瓦特的功率放大器在本研究中已被實現,操作頻率為2.55到2.65 GHz,板材是UL2000,其介電係數為2.38,厚度是0.762 mm,兩個功率放大器的濾波增益響應與輸入端反射係數都有達到預期的效果,雖然它們都能輸出其電晶體最大功率,但是以線性度IM3(Third order imtermodulatio distortion)為-30 dBm參考標準下,可用輸出功率卻遠低於最大輸出功率,在此,預失真線性技術將被採用於改善功率放大器的IM3。
    本研究將使用由一個反向並聯二極體群和一個π型衰減器所構成的預失真電路進行功率放大器的線性度之改善,另外,外加一個串聯電容並接於衰減器的串聯電阻可以減少預失真電路的植入損耗,同時也能加強對於放大器的線性度之改善效果。本預失真電路不需要額外的偏壓電路,透過調整二極體個數和衰減器的電阻以及外加的電容即可產生適當的非線性失真補償,優化所設計之功率放大器。藉由等效電路與ABCD矩陣進行電路分析,更能了解預失真電路的特性,選用板材UL2000進行電路製作,本預失真電路具有尺寸為小、低植入損失和好的反射係數等特性。功率放大器經過線性化技術的改善後,可以輸出更多的可用功率在一定的線性度標準下。


    This thesis is a design of power amplifier using z-domain and predistortion technique. The use of z domain technique helps us to find out the initial configuration of the input/output matching networks of power amplifier. In order to improve the matching condition for the combination of both predistorter and power amplifier, the input return loss of power amplifier should achieve at least 10 dB for the better performance. In general, the return loss can’t be controlled by z-domain technique, so it is often not as good as the design goal. Afterward, the power amplifier is optimized with a microwave design tool especially so that the return loss attains 10 dB while its original gain response is maintained.
    A 2-watt and a 10-watt power amplifier have been implemented and fabricated on a substrate UL2000 with εr=2.38 and h=0.762 mm. The operating frequency ranges are from 2.55 to 2.65 GHz. Though their output power has achieved the maximum value of the transistor, the usable power for a given level of IM3 is far less than the maximum output power. The predistortion technique is adopted to improve the linearity of power amplifiers.
    A predistorter composed of anti-parallel diodes and a π-type attenuator is employed to improve the IM3 of power amplifiers. An extra capacitor is added into the predistorter to reduce the insertion loss and enhance the linearity. This predistorter doesn’t need any DC bias circuit. By varying the number of diodes, the series resistor and the value of the extra capacitor, a proper predistorter is obtained for the nonlinear distortion compensation of the power amplifiers. The analysis of predistorter is illustrated by its equivalent circuits and ABCD matrix. The circuit of predistorter is also built on UL2000. This predistorter is featured with compact size, small insertion loss and good return loss.
    With the aid of predistorter, the power amplifier can provide more output power for a given IM3 level of -30 dBm with tone spacing of 5 MHz.

    摘 要 Abstract 誌 謝 Contents List of Figures List of Tables Chapter 1 Introduction Chapter 2 z Domain Technique 2.1 Fundeamental Circuits and Their Chain-Scattering Parameters 2.2 The z Domain Model of GaAs and GaN FET Transistors 2.2.1 The z Domain Model of FLL177ME 2.2.2 The z Domain Model of CGH40010F 2.3 Design of Amplifier by the Synthesis Algorithm Chapter 3 Implementation and Experimental Results of Amplifiers 3.1 The 2-Watt Power Amplifier 3.2 The 10-Watt Power Amplifier Chapter 4 Predistorter 4.1 Operation Principle of Predistorter 4.2 Experimental Results Chapter 5 Conclusion 5.1 Conclusion 5.2 Future Work Appendix A The Data Sheet of FLL177ME and CGH40010 Appendix B The Detailed Dimensions and Lumped Elements of Layout of the Power Amplifiers B.1 The Detailed Layout of the 2-Watt Power Amplifier B.1 The Detailed Layout of the 10-Watt Power Amplifier References

    [1] J. J. Komiak, R. J. Lender and K. Chu, “Wideband 1 to 6 GHz Ten and Twenty Watt Balanced GaN HEMT Power Amplifier MMICs,” Compound Semiconductor Integrated Circuit Symposium (CSICS), 2011 IEEE (2011).
    [2] J. Lim, C. Park and J. Koo, “A Balanced Power Amplifier Utilizing The Reflected Input Power,” IEEE International Symposium. Radio-Frequency Integration Technology, 2009. RFIT 2009., pp. 88 – 91 (2009).
    [3] S. You, K. Lim and J. Cho, “A 5W Ultra-Broadband Power Amplifier Using Silicon LDMOSFETs,” Asia Pacific Microwave Conference, 2009. APMC 2009., pp. 1116 – 1119 (2009).
    [4] H. Kim, M. Kim and K. Choi, “1.9GHz Band Highly Linear 2-Stage Power Amplifier MMIC Based on InGaP/GaAs HBT,” Asia Pacific Microwave Conference, 2009. APMC 2009., pp. 353 – 356 (2009).
    [5] R. Santhakumar, B. Thibeault and M. Higashiwaki, “Two-Stage High-Gain High-Power Distributed Amplifier Using Dual-Gate GaN HEMTs,” IEEE Trans. Microwave Theory Tech., Vol. 59, No.8, pp. 2059 - 2063 (2011).
    [6] N. Srirattana, A. Raghavan and D. Heo, “Analysis and Design of A High-Efficiency Multistage Doherty Power Amplifier for Wireless Communications,” IEEE Trans. Microwave Theory Tech., Vol. 53, No.3, pp. 852 – 860 (2005).
    [7] D. H. Jang, J. H. Choi and J. H. Kim, “Asymmetric Doherty Power Amplifier with Optimized Characteristics in Output Power Back-Off Range between 6 dB and 10 dB,” Microwave Conference (EuMC), 2010 European, pp. 870 – 873 (2010).
    [8] L. H. Lu, C. W. Hsue and B. C. Chieu, “Design of Broadband Amplifier Embedded with Band-Pass Filter Using Discrete-Time Technique,” IEIC Trans. Electron., Vol. E94-C, No. 5 (2011).
    [9] D. C. Chang and C. W. Hsue, “Design and Implementation of Filters Using Transfer Functions in the z Domain,” IEEE Trans. Microwave Theory Tech., Vol. 49, No.5, pp. 979 – 985 (2001).
    [10] L. C. Tsai and C. W. Hsue, “Dual-Band Bandpass Filters Using Equal-Length Coupled-Serial-Shunted Lines and z-Transform Technique,” IEEE Trans. Microwave Theory Tech., Vol. 52, No.4, pp. 1111 – 1117 (2004).
    [11] C. W. Hsue, Y. W. Chang and D. L. Miao, “Tunable Bandstop Filter Using Equal-Length Two-Section Stubs and z-DomainTechnique,” 2011 IEEE International Workshop on Electromagnetics, Applications and Student Innovation (iWEM), pp. 61 – 65 (2011).
    [12] A. Katz, “Linearization: Reducing Distortion in Power Amplifiers,” IEEE Microwave Magazine, Vol. 2, No. 4, pp. 37 – 49 (2001).
    [13] J. Legarda, J. Presa and E. Hernandez, “An Adaptive Feedforward Amplifier Under “Maximum Output” Control Method for UMTS Downlink Transmitters,” IEEE Trans. Microwave Theory Tech., Vol. 53, No.8, pp. 2481 – 2486 (2005).
    [14] S. Pipilos, Y. Papananos and N.Naskas, “A Transmitter IC for TETRA Systems Based on a Cartesian Feedback Loop Linearization Technique,” IEEE Journal of Solid-State Circuits, Vol. 40, No.3, pp. 707 – 718 (2005).
    [15] M. Seo, K. Kim and M. Kim, “Ultrabroadband Linear Power Amplifier Using a Frequency-Selective Analog Predistorter,” IEEE Trans. Circuits and Systems II: Express Briefs, Vol. 58, No.5, pp. 264 – 268 (2011).
    [16] K. Yamauchi, H. Noto and S. Ishizaka, “Series Anti-Parallel Diode Linearizer for Class-B Power Amplifiers with a Gain Expansion,” Asia-Pacific Microwave Conference, 2006. APMC 2006., pp. 883 – 886 (2006).
    [17] K. Yamauchi, M. Nakayama and Y. Ikeda, “An 18 GHz-Band MMIC Linearizer Using a Parallel Diode with a Bias Feed Resistance and a Parallel Capacitor,” 2000 IEEE MTT-S International Microwave Symposium Digest, Vol. 3, pp. 1507 – 1510 (2000).
    [18] K. Yamauchi, K. Mori and M. Nakayama, “A Microwave Miniaturized Linearizer Using a Parallel Diode with a Bias Feed Resistance,” IEEE Trans. Microwave Theory Tech., Vol. 45, No. 12, pp. 2431 – 2435 (1997).
    [19] K. Yamauchi, K. Mori and M. Nakayama, “A Novel Series Diode Linearizer for Mobile Radio Power Amplifiers,” IEEE MTT-S International Microwave Symposium Digest, Vol. 2, pp. 831 – 834 (1996).
    [20] N. Gupta, A. Tombak and A. Mortazawi, “A Predistortion Linearizer Using a Tunable Resonator,” IEEE Microwave and Wireless Components Letters, Vol. 14, No. 9, pp. 431 – 433 (2004).
    [21] J. H. Tsai; H. Y. Chang and P. S. Wu, “Design and Analysis of a 44-GHz MMIC Low-Loss Built-in Linearizer for High-Linearity Medium Power Amplifiers,” IEEE Trans. Microwave Theory Tech., Vol. 54, No.6, pp. 2487 – 2496 (2006).
    [22] S. Ko and J. Lin, “A Novel Linearizer and A Fully Integrated CMOS Power Amplifier,” Asia-Pacific Microwave Conference, 2006. APMC 2006., pp. 144 – 147 (2009).
    [23] S. Yamanouchi, Y. Aoki and K. Kunihiro, “Analysis and Design of a Dynamic Predistorter for WCDMA Handset Power Amplifiers,” IEEE Trans. Microwave Theory Tech., Vol. 55, No. 3, pp. 493 – 503 (2007).
    [24] T. Yoshimasu and M. Akagi, “An HBT MMIC Power Amplifier with an Integrated Diode Linearizer for Low-Voltage Portable Phone Applications,” IEEE Journal of Solid-State Circuits, Vol. 33, No. 9, pp. 1290 – 1296 (1998).
    [25] 張峻源,「應用於功率放大器之無偏壓預失真電路設計」,碩士論文,國立台灣科技大學,台北 (2011)。
    [26] D. M. Pozar, Microwave Engineering, 3rd Ed., John Wiley & Sons, Inc, p.p. 183-187 (2005).
    [27] K. Nagatomo, Y. Daido, M. Shimizu, and N. Okubo, “GaAs MESFET Characterization Using Least Squares Approximation by Rational Functions,” IEEE Trans. Microwave Theory Tech., Vol. 41, No. 2, pp. 199 – 205 (1993).
    [28] E. C. Levi, “Complex-Curve Fitting” IRE Transaction Automatic Control, Vol. AC-4, pp.37-44 (1959).
    [29] M. L. Edwards and J. H. Sinsky, “A New Criterion for Linear 2-Port Stability Using A Single Geometrically Derived Parameter,” IEEE Trans. Microwave Theory Tech., Vol. 40, No. 12, pp. 2303 – 2311 (1992).
    [30] ETSI, Digital Cellular Telecommunications System (Phase 2+);
    Radio Transmission and Reception, version 8.5.1 (2000).

    QR CODE