簡易檢索 / 詳目顯示

研究生: 鄭仕傑
Shih-chieh Cheng
論文名稱: 感應熔煉爐生長多晶矽之模擬分析
Simulation and Analysis of an RF Induction Heating Furnace for Polycrystalline Silicon Growth
指導教授: 連國龍
Kuo-Lung Lian
口試委員: 吳瑞南
Ruay-Nan Wu
王星豪
Shing-Hoa Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 106
中文關鍵詞: 多晶矽模擬分析
外文關鍵詞: polycrystalline, simulation analysis
相關次數: 點閱:206下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

真空感應熔煉與控制凝固在生產多晶矽是新發展的製程方式,比起傳統的電阻加熱法,其主要優勢在於加熱速度快。而太陽能電池可分為以下三種類型-單晶矽、多晶矽與非晶矽。其中,多晶矽佔了太陽能市場的50%,原因在於其成本低於單晶矽且效率高於非晶矽。
在太陽能電池中的多晶矽,如何控制此矽晶熔體溫度的關鍵在於感應爐中的參數,而要探討每個參數對矽晶熔體溫度的影響是一件昂貴且費時的事情。因此,在經濟的考量上,以數值模擬設計一個感應熔煉爐是可行的。本論文探討了數個感應熔煉爐的參數,其中包括:石墨的塗層、石墨的幾何形狀以及水冷板的材質。
本研究結果顯示:
1. 以不鏽鋼(Steel 304)材質製成的水冷板加熱效果最好
2. 石墨坩鍋的厚度越大,加熱效果越好
3. 石墨分段的段數越多,溫度越低
4. 石墨分段距離越大,溫度越低
5. 石墨外層表面塗上導熱系數低之材料,可防止熱消散,內層表面塗上導熱系數高之材料,可易於熱量傳導至矽。


The vacuum induction melting and control solidification is a new developed process for the manufacture of polycrystalline silicon with the advantage of quick heating rate compared to the traditional resistance heating method.
The parameters of the induction furnace play a key role in controlling the temperature of the melt of polycrystal silicon for solar cells. It is expensive and time-consuming to investigate experimentally how each parameter affects the silicon melt temperature. Therefore, numerical simulation is an economically feasible means to design an induction melting furnace. This thesis investigates several parameters of an induction furnace. These parameters include coatings on the graphite susceptor, geometries of the graphite suceptor, and the material of the cooling base plate.
Numerical simulations show that:
1. Cooling base plate made of steel 304 yields the best heating efficiency;
2. The thicker the graphite susceptor, the higher the temperature is raised;
3. The more section the graphite susceptor divided, the lower the temperature of the susceptor is raised;
4. The bigger distance between two sections, the lower the temperature of the susceptor is raised;
5. The coating material at the outer surface of the susceptor should be the one with low thermal conductivity to prevent heat losses. On the other hand, the coating on the inner surface should be one with high thermal conductivity to allow easy heat transfer.

摘  要 Ⅰ Abstract Ⅱ 目  錄 Ⅲ 圖索引 Ⅴ 表索引 Ⅶ 第一章 簡介 1 1.1 研究背景 1    1.1.1 PN接面 4    1.1.2 太陽能產業發展 5   1.2 研究動機 9 第二章 文獻回顧 12 2.1 多晶矽原料 15 2.1.1 西門子製程 17 2.1.2 ASiMi法 20 2.1.3 流床體反應爐法 20 2.2 多晶矽生長 22 2.2.1 Ribbon growth on substrate(RGS)製程 22 2.2.2 Edge-defined film-fed growth on substrate(EFG)製程 23 2.2.3 String ribbon growth(SR)製程 24 2.2.4 坩堝下降法(Bridgman method) 25 2.2.5 鑄錠法(conventional casting) 25 2.2.6 熱交換法(heat exchanger method,HEM) 26 2.2.7 電磁鑄造法(electromagnetic casting,EMC) 27 2.2.8 柴式長晶法(Czochtalski,Cz) 32 第三章 模擬數值分析 35   3.1 模擬實驗原理. 35   3.2 有限元素法(FEM) 39 3.2.1 有限元素法二維公式推導 41 3.3 有限差分法 52 3.3.1 有限差分法二維公式推導 52 3.4 統御方程式 58 3.5 應用軟體 60 第四章 實驗結果 61   4.1 實驗過程 62 第五章 模擬結果 66   5.1 水冷卻板 67   5.2 石墨坩堝厚度 68 5.3 石墨坩堝分段 70 5.4 塗層 72 5.4.1 外層 72 5.4.2 內層 76 5.4.3 內外層 79 第六章 結論與未來展望 83   6.1 結論 83   6.2 未來展望 84 參考文獻 85 附錄A 90

[1] Demaria A. J., “Maxwell’s Children Light the Way”, IEEE Circuits and Devices Magazine, Vol. 7, pp. 38 (1991)
[2] Chapin D. M., Fuller C. S., pearson G. L., “A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power”, Journal of Applied Physics, Vol. 25 , pp.676-677(1954)
[3] 林明獻,太陽電池技術入門(修訂版),全華,台北縣土城市,第2.10-3.19頁 (2008)
[4] 沈輝、曾祖勤,太陽能光電技術,五南,台北市,第38-48頁 (2008)
[5] Carlson D. E., Wronski C. R., “Amorphous Silicon Solar Cell”, Applied Physics Letters, Vol. 28 No. 11 , pp.671-673. 1(1976)
[6] 林于翔,「併網型與獨立型太陽能發電系統之硏究」,台灣科技大學,台北(2007)
[7] 林易萱、張弘昌,太陽能超完美搶錢劇本,今周刊,台北,第630期(2009)
[8] 拓墣產業研究所,低碳經濟下的太陽能光伏產業發展趨勢 (2011)
[9] http://www.moneydj.com/
[10] 林明獻,矽晶圓半導體材料技術,第2.40、4.29-4.37 頁(1999)
[11] http://en.wikipedia.org/wiki/Silicon
[12] Yuge N., Abe M., Hanazawa K., Baba H., Nakamura N., Kato Y., Sakaguchi Y., Hiwasa S., Aratani F., “Purification of Metallurgical-Grade Silicon up to Solar Grade”, Solar Energy Materials and Solar Cells, Vol. 34 , pp. 243-250 (2001)
[13] http://www.dowcorning.com/
[14] http://www.nsc.co.jp/en/index.html
[15] http://www.jfe-steel.co.jp/en/index.html
[16] http://www.materials.elkem.com/
[17] http://www.arisetech.com/
[18] http://www.solarvalue.de/
[19] 游志樸,半導體材料,第201-205頁 (2003)
[20] http://www.recgroup.com/
[21] http://www.hscpoly.com/default.aspx?bhcp=1
[22] http://www.memc.com/
[23] http://www.wacker.com/cms/en/home/index.jsp
[24] http://www.tokuyama.co.jp/eng/index.html
[25] http://www.mitsubishielectric.com/
[26] http://renb1985.blog.hexun.com.tw/63680088_d.html
[27] http://www.51qiti.com/Files/Faq271.htm
[28] Lange H., Schwirtlich I. A., “Ribbon Growth on Substrate (RGS) - A New Approach to High Speed Growth of Silicon Ribbons for Photovoltaics”, Journal of Crystal Growth, Vol. 104 , pp. 108-112 (1990)
[29] Hanoka J. I., “An Overview of Silicon Ribbon Growth Technology”, Solar Energy Materials & Solar Cells , Vol. 65 , pp. 231-237 (2001)
[30] 黃惠良、曾百亨,太陽能轉換成電能的最佳裝置-太陽電池 (2008)
[31] Viechnicki D., Schmid F., “Crystal Growth Using the Heat Exchanger Method (HEM)”, Journal of Crystal Growth, Vol. 26 , pp. 162-164 (1974)
[32] C. P. Khattak , F. Schmid , Am. Ceram. Soc. Bull, Vol. 57 , pp. 609 (1978)
[33] Kim J. M., Kim Y. K., “Growth and Characterization of 240 kg Multicrystalline Silicon Ingot Grown by Directional Solidification”, Solar Energy Materials & Solar Cells, Vol. 81 , pp. 217-224 (2004)
[34] Ciszek T. F., “Some Applications of Cold Crucible Technology for Silicon Photovoltaic Material Preparation”, J. Electrochemical Soc, Vol. 132 , pp. 963 (1985)
[35] Dour G., Ehret E., Laugier A., Sarti D., Garnier M., Durand F., “Continuous Solidification of Photovoltaic Multicrystalline Silicon from an Inductive Cold Crucible”, Journal of Crystal Growth, Vol. 193 , pp. 230-240 (1998)
[36] Dedulle J-M., Mercier F., Chaussende D., Pons M., “Modeling of High Temperature Crystal Growth Process”, European COMSOL Multiphysics Conference (2007)
[37] Dughiero F., Forzan M., Ciscato D., “A New DSS Furnace for Energy Saving in the Production of Multicrystalline Silicon”, IEEE Photovoltaic Specialists Conference 35th, France, pp. 2165-2170 (2010)
[38] http://www.saetgroup.com/index.php
[38] Czochralski J. Z., Phys. Chem., Vol. 92, pp. 219 (1918)
[39] Teal G. K., Little J. B., “Growth of germanium single crystals”, Phys. Rev., Vol. 78 , pp. 647 (1950)
[40] Derby J. J., Brown R. A., “Thermal-Capillary Analysis of Czochralski and Liquid Encapsulated Czochralski Crystal Growth: I. Simulation”, Journal of Crystal Growth, Vol. 74, pp. 605-624 (1986)
[41] Derby J. J., Brown R. A., “Thermal-Capillary Analysis of Czochralski and Liquid Encapsulated Czochralski Crystal Growth: II. Processing Strategies”, Journal of Crystal Growth, Vol. 75, pp. 227-240 (1986)
[42] Lipchin A., Brown R. A., “Hybrid Finite-Volume/Finite-Element Simulation of Heat Transfer and Melt Turbulence in Czochralski Crystal Growth of Silicon”, Journal of Crystal Growth, Vol. 216, pp. 192-203 (2000)
[43] Takano K., Shiraishi Y., Iida T., Takase N., Matsubara J., Machida N., Kuramoto M., Yamagishi H., “Numerical Simulation for Silicon Crystal Growth of up to 400mm Diameter in Czochralski Furnaces”, Mater Sci. and Eng., Vol. B73 , pp. 30-35 (2000)
[44] Takano K., Shiraishi Y., Iida T., Takase N., Matsubara J., Machida N., Kuramoto M., Yamagishi H., “Global Simulation of the CZ Silicon Crystal Growth up to 400mm in Diameter”, Journal of Crystal Growth, Vol. 229 , pp. 26-30 (2001)
[45] Li M., Li Y., Imaishi N., Tsukada T., “Global Simulation of a Silicon Czochralski Furnace”, Journal of Crystal Growth, Vol. 234 , pp. 32-46 (2002)
[46] Kakimoto K., Liu L., “Partly Three-Dimensional Global Modeling of a Silicon Czochralski Furnace. I. Principles, Formulation and Implementation of the Model”, International Journal of Heat and Mass Transfer, Vol. 48, pp. 4481-4491 (2005)
[47] Kakimoto K., Liu L., “Partly Three-Dimensional Global Modeling of a Silicon Czochralski Furnace. II. Model Application: Analysis of a Silicon Czochralski Furnace in a Transverse Magnetic Field”, International Journal of Heat and Mass Transfer, Vol. 48, pp. 4492–4497 (2005)
[48] Theurer H. C., Trans. Am. Inst. Mining Met Engrs., Vol. 206, pp. 1316 (1956)
[49] John H. Lienhard IV, John H. Lienhard V, A Heat Transfer Textbook Third Edition, Phlogiston Press, USA, pp. 11 (2003)
[50] Turner M. J., Clough R. W., Martin H. C., Topp L. C., “Stiffness and Deflection Analysis of Complex Structures”, J. Aero. Sci., Vol. 23, pp. 805-823 (1956)
[51] Clough R. W., “The Finite Element Methpd in Plane Stress Analysis”, Proc. ASCE 2nd conf. Electronic Computations, Pittsburgh , Pa , pp. 345-378 (1956)
[52] Besseling J. F., “The Complete Analogy between The Matrix Equations and The Continuous Field Equations of Structural Analysis”, International Symposium on Analogue and Digital Techniques Applied to Aeronautics , Liege , Belgium (1963)
[53] Melosh R. J., “Basis for The Derivation of Matrix for The Direct Stiffness Method”, AIAAJ. , Vol. 1, pp. 1631-1637 (1963)
[54] Jones R. E., “A Generalization of The Direct Stiffness Method of Structural Analysis”, AIAAJ. , Vol. 2, pp. 821-826 (1964)
[55] Rayleigh J. W. S., The Theory of Sound, Volume One, MacMillan, New York, Dover (1894)
[56] Ritz W., “Uber eine neue Methode zur Losung gewissen variations—Probleme der Mathematischen Physik”, J. Reine Angew. Math, Vol. 135, pp. 1-61 (1909)
[57] Zienkiewicz O. C., Cheung Y. K., “Finite Element in The Solution of Field Problem”, The Engineer, Vol. 220 , pp. 507-510 (1965)
[58] Heuser J., “Finite Element Method for Thermal Analysis.”, NASA Tech. Note, TN D-7274 (1973)
[59] Huebner K. H., Finite Element Method for Engineers, John Wiley & Sons, New York (1975)
[60] Lonngran K. E., Savov S. V., Jost R. J., Fundamentals of Electromagnetics with MATLAB. 2nd, SciTech Publishing; 2nd edition, (2007)
[61] http://www.mathworks.com/
[62] Bermudez A., Gomez D., Muniz M. C., Salgado P., Vazquez R., “Numerical Simulation of Induction Furnaces for Silicon Purification”, Mathematics In Industry, Vol. 12 , pp. 48-65 (2008)
[63] Chaboudez C., Clain S., Glardon ,R. Mari D., Rappaz J., Swierkosz M., “Numerical Modeling in Induction Heating for Axisymmetric Geometries”, IEEE Trans. On Magnetics, Vol. 33, NO. 1, pp. 739-745 (1997)
[64] Pal M., Kholmatov S., Jonsson P., “Numerical Simulation of Induction Stirred Ladle”, Excerpt from the Proceedings of the COMSOL Users Conference, Birmingham (2006)
[65] http://www.softimpact.ru/cgsim.php

QR CODE