簡易檢索 / 詳目顯示

研究生: 簡士傑
Shih-Jie Jian
論文名稱: 寬鎖頻範圍之除三注入鎖定除頻器與六階RLC共振腔注入鎖定除頻器設計
Design of Wide Locking Range Divide-by-3 Injection-Locked Frequency Divider and Injection-Locked Frequency Divider Using 6th-Order RLC Resonator
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
馮武雄
Wu-Shiung Feng
黃進芳
Jhin-Fang Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 102
中文關鍵詞: 注入鎖定除頻器寬鎖頻範圍
外文關鍵詞: injection-locked frequency divider, wide locking range
相關次數: 點閱:211下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在RF射頻收發機中,PLL的特性非常重要,PLL內部包含了相位偵測器(PFD)、充電幫浦(CP)、迴路濾波器(LF)、壓控振盪器(VCO)、除頻器(FD),而為了追求低功耗,低相位雜訊,與較寬的除頻範圍,在這其中又以壓控振盪器和注入鎖定除頻器特性最重要,而本論文主要研製鎖相迴路之注入鎖定除頻器。

首先,第一部分我們呈現一個寬頻除三注入鎖定除頻器,此除頻器使用台積電矽鍺0.18μm製程,晶片面積為0.859×0.817mm2。此除三除頻器設計基於一電容耦合的壓控振盪器,且利用電阻加入共振腔來增加除頻範圍。此除頻器最佳工作電壓操作在0.8伏特,整體功耗為5.26mW,在注入強度為0dbm時,除頻範圍可從6.2GHz~12.6GHz,百分比為68.09%。

接著,第二部份我們呈現一個寬頻除二注入鎖定除頻器,由台積電0.18μm製程實現。此除二除頻器使用電容交叉耦合nMOS對和雙並聯四階右手RLC共振腔。在工作偏壓0.75V、注入強度0dBm下,除二範圍總共為7.5GHz,注入頻率從3.6GHz~11.1GHz,總除頻百比例為102.04%。此除頻器功耗為4.875mW,晶片面積1.008×1.182mm2。

最後,第三部份我們呈現一個寬頻除四注入鎖定除頻器,同樣使用台積電0.18μm製程來實現。此除頻器使用電容交叉耦合nMOS對與雙並聯四階RLC所組成的六階RLC共振腔。在VT的調整下,可使高頻和中頻鎖住範圍重疊,形成一個較寬除頻範圍。在驅動偏壓為1.2V、注入功率為0dbm時,注入鎖定頻率為13~19GHz,鎖住範圍共6GHz,百分比為37.5%。此晶片面積為1.008×1.182mm2,除頻器的核心功耗共7.09mW。


In the RF transceiver, PLL are very important, PLL characteristics include Phase Frequency Detector (PFD), Charge Pump (CP), Loop Filter (LF),Voltage Controlled Oscillator (VCO), and Frequency Divider (FD), In order to pursue low-power, low phase noise, wide Locking range, the most important characteristics of performance are VCO and Divider. This thesis presents the design of Injection-Locked Frequency Dividers (ILFDs).

First, a wide locking range divide-by-3 injection-locked frequency divider (ILFD) using a standard 0.18 μm BiCMOS process is presented. The die area is 0.859 × 0.817 mm2. The ILFD circuit bases on capacitive cross-coupled oscillator and uses resonator with resistor to enhance the locking range. The power consumption of the ILFD core is 5.26 mW and the locking range is from 6.2 to 12.6 GHz (68.09%) at injection power Pinj = 0 dBm.

Secondly, a wide locking range divide-by-2 LC injection-locked frequency divider (ILFD) was implemented in the TSMC 0.18 μm 1P6M CMOS process. The divide-by-2 ILFD uses a capacitive cross-coupled nMOS pair and two shunt 4th-order RLC resonators. At the drain-source bias of 0.75 V, and at the incident power of 0 dBm the maximum locking range of the divide-by-2 ILFD is 7.5 GHz (102.04%) from 3.6 to 11.1 GHz, the ILFD has overlapped locking ranges. The core power consumption is 4.875 mW. The die area is 1.008 × 1.182 mm2.

Finally, a wide locking range divide-by-4 LC injection-locked frequency divider (ILFD) was implemented in the TSMC 0.18 μm 1P6M CMOS process. The divide-by-4 ILFD uses a capacitive cross-coupled nMOS pair and two shunt 4th-order RLC resonators. At the drain-source bias of 0.8 V, and at the incident power of 0 dBm, the locking range of the divide-by-4 ILFD is 6 GHz, from the incident frequency 13 to 19 GHz and the locking range percentage is 37.5%. The die area is 1.008 × 1.182 mm2. The power consumption of ILFD core is 7.09 mW.

摘要 Abstract 致謝 Table of Contents List of Figures List of Tables Chapter 1 Introduction Chapter 2 Principles and Design Considerations of Voltage Controlled Oscillators Chapter 3 Design of Injection Locked Frequency Divider Chapter 4 Wide-Band ÷3 Capacitive Cross-Coupled Injection-Locked Frequency Divider Chapter 5 Divide-by-2 Injection-Locked Frequency Divider Using Two Shunt Right-Handed 4th-Order RLC Resonators Chapter 6 Wide-Band Divide-by-4 Injection-Locked Frequency Divider Using 6th-Order RLC Resonator Chapter 7 Conclusions References

[1] B. Razavi, “RF Microelectronics”, Upper Saddle River, NJ: Prentice Hall, 1998
[2] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
[3] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
[4] B. Razavi, Design of Analog CMOS Integrated Crcuits, MC Graw Hall,2001.
[5] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[6] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
[7] Y. K. Koutsoyannopoulos, and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans. Crcuits and System-II, vol. 47, no. 8, pp. 699-713, 2000.
[8] A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, 2001.
[9] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
[10] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179−194, Feb. 1998.
[11] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, 2000, pp. 569−572.
[12] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326−336, Mar. 2000.
[13] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
[14] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
[15] D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
[16] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[17] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[18] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
[19] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[20] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[21] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
[22] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
[23] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
[24] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
[25] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
[26] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[27] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
[28] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
[29] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
[30] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp.27–29.
[31] S.-L. Jang, C.-W. Chang, C.-F. Lee, and J.-F. Huang, “Divide-by-3 LC injection locked frequency divider implemented with 3D inductors,” IEICE Trans. Electron., vol. E91-C, no.6, pp. 956–962, Jun. 2008.
[32] S.-L. Jang,C.-Y. Lin, and C.-F. Lee, “A low voltage 0.35μm CMOS frequency divider with the body injection technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp.470–472, July 2008.
[33] S.-L. Jang, C.-C. Liu, and J.-F. Huang, “Divide-by-3 injection-locked frequency divider using two linear mixers,” IEICE Trans. on Electron., vol. E93-C, No.1, pp.136-139, Jan. 2010.
[34] S.-L. Jang, and C.-W. Chang, “A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.229-231, April, 2010.
[35] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, “A wide-locking range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.390-392, July, 2010.
[36] Wu J.-W, C.-C. Chen, H.-W. Kao, J.-K. Chen, and M.-C. Tu, “Divide-by-three injection-locked frequency divider combined with divide-by-two locking,” IEEE Microw. Wireless Compon. Lett., pp. 590-592, Nov., 2013.
[37] Y.-T. Chen, M.-W. Li,H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, “Low-voltage K-band divide-by-3 injection-locked frequency divider with floating-source differential injector,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 160–67, 2012.
[38] K.-H. Chien, J. Y. Chen and H. K. Chiou, “Designs of K-band divide-by-2 and divide-by-3 injection-locked frequency divider with darlington topology,” IEEE Trans. Microw. Theory Tech., vol. 99, 2015.
[39] S.-L.Jang, C.-Y. Lin and M.-H. Juang, “Enhanced locking range technique for a divide-by-3 differential injection-locked frequency divider,” Electronics Letters., vol. 51, 6, 19 March 2015, p. 456 – 458.
[40] S.-L.Jang, T.-C. Kung and C.-W. Hsue, “Wide-locking range divide-by-3 injection-locked frequency divider through enhanced 2nd harmonic,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 7, 2016.
[41] S.-L.Jang, X.-Y. Hang, and W.–T. Liu, “Review: capacitive cross-coupled injection-locked frequency dividers,” Analog Integr Circ Sig Process, 88:97–104, 2016.
[42] S.-L.Jang, and C.-Y. Lin, “A wide-locking range Class-C injection-locked frequency divider,” Electronics Letters., vol. 50, 23, pp.1710-1712, 2014.
[43] S.-L.Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, “Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electronics Letters ,vol. 51, no. 23, 05 Nov 2015, p. 1888 – 1889.
[44] S.-L.Jang and C.-Y. Chuang, “Wide-locking range ÷3 series-tuned injection-locked frequency divider,” Analog Integr CircSig Process.,vol. 76, Issue 1, pp. 111-116, 2013.
[45] S.-L.Jang, and J.-H. Hsieh, “A wide-locking range ÷3 injection-locked frequency divider using concurrent injection mechanisms,” Analog Integr Circ Sig Process., Vol. 77, pp 593-598, 2013.
[46] H. Wu and A. Hajimiri, “A 19 GHz 0.5mW 0.35μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int. Solid-State Circuits Conf., pp. 412-413, Feb. 2001.
[47] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
[48] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injection locked divider,” in IEEE Int. Solid-State Circuits Conf. Dig., pp. 2472–2481, Feb. 2006.
[49] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
[50] S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng, “Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol.55, 10, pp. 2333–2337, October 2013.
[51] S.-L.Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, “Enhanced locking range technique for frequency divider using dual-resonance RLC resonator',” Electronics Letters, vol. 51, no. 6, 19 March 2015, p. 456 – 458.
[52] S.-L. Jang,W.-C. Cheng and C.-W. Hsue, “A triple-resonance RLC-tank divide-by-2injection-locked frequency divider,” Electronics Letters, Available online: 17 Feb. 2016.
[53] S.-L. Jang, R.-K. Yang, C.-W. Chang and M.-H. Juang, “Multi-modulus LC injection-locked frequency dividers using single-ended injection”, IEEE Microw. Wireless Compon. Lett.., vol. 19, pp. 311-313, 2009.
[54] C.-W. Chang, S.-L. Jang, C.-W. Huang, and C.-C. Shih, “Dual-resonance LC-tank frequency divider implemented with switched varactor bias,” IEEE Int. VLSI- DAT, 2011, pp.1-4.
[55] S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang, “Injection-locked frequency divider using injection mixer DC-biased in sub-threshold,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, March 2015.
[56] S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang, “LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008.
[57] S. Lee, S. Jang, and C. Nguyen, “Low-power-consumption wide-locking-range dual-injection-locked 1/2 divider through simultaneous optimization of VCO loaded Q and current,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3161–3168, Oct. 2012.
[58] N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb 2014.
[59] S.-L. Jang, F.-B. Lin,and J.-F. Huang, “Wide-band divide-by-2 injection-locked frequency divider using MOSFET mixers DC-biased in subthreshold region,” Int. J. Circ Theor App, 43, pp. 2081-2088, Dec. 2015.
[60] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
[61] W. Chen, and C. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25μm CMOS Technology,” European Solid-State Circuits Conf. pp. 89- 92, Sept. 2002.
[62] S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 5, pp. 373–375, May 2007.
[63] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injection locked divider,” in IEEE Int. Solid-State Circuits Conf. Dig., pp. 2472–2481, Feb. 2006.
[64] S.-L. Jang,C. C. Liuand C.-W. Chung, “A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol.19, no. 4, pp. 236-238, April 2009.
[65] S.-L. Jang, S. Jain, J.-F. Huang, and C.-W. Hsue, “DC-bias and oscillation-amplitude dependent frequency-tuning characteristics of varactor-switching dual-band CMOS VCOs,” Microw. Opt. Technol. Lett., 55, 6, pp.1389-1393, June 2013.
[66] S.-L. Jang, C.-H. Liu, C.-W. Chang, and M.-H. Juang, “A low voltage, low power divide-by-4 LC-tank injection-locked frequency divider,” Int. J. Electronics., vol. 98, no. 4, pp. 521-527, April 2011.
[67] M.-C. Chuang, J.-J.Kuo, C.-H.Wang, and H. Wang, “A 50 GHz divide-by-4 injection lock frequency divider using matching method,” IEEE Microw.Wireless Compon. Lett., vol. 18, pp. 344–346, May 2008.
[68] S.-L. Jang, and C.-C. Fu., “Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers,” Analog Integr Circ Sig Process, vol. 78, issue 2, pp. 523–528, Feb. 2014.

無法下載圖示 全文公開日期 2021/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE