簡易檢索 / 詳目顯示

研究生: 蔣智中
Chih-Chung Chiang
論文名稱: 基於雲端技術之儲能系統管理
Energy Storage System Management Based on Cloud Technology
指導教授: 林長華
Chang-Hua Lin
口試委員: 林長華
Chang-Hua Lin
黃仲欽
Jonq-Chin Hwang
王永宜
Yung-Yi Wang
陳堃峯
Kun-Feng Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 131
中文關鍵詞: 雲端神經網路電池管理系統儲能系統
外文關鍵詞: Cloud, Neural Network, Battery Management System, Energy Storage System
相關次數: 點閱:316下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以雲端運算服務、前端網頁服務及資料庫作為雲端基礎架構,並以軟體即服務(Software as a Service, SaaS)之概念規劃一種用於儲能系統之雲端資訊管理系統。其次,本文於雲端運算服務中導入人工智慧神經網路技術,使儲能系統資訊可透過神經網路進行分析,並將其資訊呈現於前端網頁,充分落實單一系統滿足儲能系統資訊之管理。再者,本文以物聯網技術實現主從式架構,以降低電池管理系統之複雜度,並透過網際網路隨時與雲端進行溝通,以實現即時監控及分析等功能。另外,本文將系統進行整合,並且透過軟體日誌及資料視覺化之方式,以驗證系統之成果。最後,本文將人工智慧神經網路技術於電池剩餘容量之預測與目前新型方法相比,證明本文所使用之方法誤差較低。


    This thesis uses cloud computing services, front-end web services and databases as the cloud infrastructure, and plans a cloud information management system for energy storage systems with the concept of Software as a Service (SaaS). Secondly, this thesis introduces an artificial intelligence neural network technology into the cloud computing service, so that the energy storage system information can be analyzed through the neural network, and its information is presented on the front-end webpage, fully implementing a single system to meet the management of the energy storage system information. Furthermore, this thesis implements the master-slave architecture with the “Internet of Things” technology to reduce the complexity of the battery management system and communicate with the cloud at any time through internet to achieve real-time monitoring and analysis. In addition, this thesis integrates the system and verifies the results of the system through software log and data visualization. Finally, this thesis compares the prediction of the remaining capacity of battery by artificial intelligence neural network technology with now existing methods, confirming the validity of the proposed method with a lower prediction error.

    摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景 1.2 文獻探討 1.3 論文架構 第二章 微電網儲能系統與電池管理技術介紹 2.1 微電網儲能系統技術介紹 2.2 電池管理技術介紹 2.2.1 鋰電池種類與規格 2.2.2 電池電量狀態 2.2.3 電池健康狀態 2.2.4 電池保護機制 2.2.5 電池平衡技術 第三章 雲端技術介紹 3.1 雲端架構技術介紹 3.1.1雲端技術之用途與目的 3.1.2 雲端運算模型介紹 3.1.3 雲端設備介紹 3.1.4 資料庫介紹 3.1.5 網頁技術介紹 3.1.5.1 前端技術介紹 3.1.5.2 後端技術介紹 3.1.5.3 MVC框架 3.2 雲端分析技術 3.2.1 傳統機器學習分析介紹 3.2.1.1 支援向量機 3.2.1.2 回歸分析 3.2.2 深度學習分析介紹 3.2.2.1 前饋神經網絡 3.2.2.2 長短期記憶網路 第四章 雲端技術應用於儲能系統管理 4.1 系統架構 4.2 電池管理系統 4.2.1 電池管理系統之硬體介紹 4.2.1.1 電池監測電路 4.2.1.2 電池平衡電路 4.2.1.3 供電開關電路 4.2.1.4 中央管理單元 4.2.1.5 區域管理單元 4.2.2 電池管理系統之軟體架構介紹 4.2.2.1 中央管理單元 4.2.2.2 區域管理單元 4.2.3 電池資料採集系統介紹 4.2.4 電池平衡系統介紹 4.2.5 資料處理系統介紹 4.2.5.1 資料處理系統於資料處理及控制 4.2.5.2 資料處理系統之通訊介面 4.2.5.2.1 Modbus通訊介面 4.2.5.2.2 CAN bus通訊介面 4.3 雲端系統與儲能系統之連結 4.3.1 雲端運算服務介紹 4.3.1.1 電池狀態分析 4.3.1.2 儲能系統狀態分析 4.3.2 資料庫介紹 4.3.3 前端網頁服務介紹 4.3.4 通訊訊息介紹 第五章 儲能系統管理實作與討論 5.1 系統實作結果 5.1.1 電池管理系統之實作結果 5.1.1.1 電池資料採集系統 5.1.1.2 電池平衡系統 5.1.1.3 資料處理系統 5.1.2 雲端系統之實作結果 5.1.2.1 前端網頁服務 5.1.2.1.1 前端網頁服務之首頁 5.1.2.1.2 前端網頁服務之電池模組分頁 5.1.2.2 資料庫 5.2 系統分析結果 5.2.1 鋰電池狀態之分析結果 5.2.1.1 鋰電池電量狀態估測之結果 5.2.1.2 鋰電池剩餘容量降解曲線預測之結果 5.2.2 儲能系統狀態之分析結果 5.3 系統決策結果 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

    [1] Y. U. Jeong, H. V. Venkatasetty, “Recent advances in lithium-ion and lithium-polymer batteries,” The 17th Annu. Battery Conf. Appl. Adv., pp. 173-178, 2002.
    [2] G. Pendse., “Cloud computing: Industry report & investment case,” Nasdaq, 2017.
    [3] Li-Ming Deng, Yu-Cheng Hsu, Han-Xiong Li, “An improved model for remaining useful life prediction on capacity degradation and regeneration of lithium-ion battery,” Annual Conference of the Prognostics and Health Management Society 2017, October 2017.
    [4] R. Xiong, J. Tian, H. Mu, and C. Wang, ‘‘A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries,’’ Appl. Energy, vol. 207, pp. 367–378, Dec. 2017.
    [5] V. Pop, H. J. Bergveld, D. Danilov, P. P. L. Regtien, and P. H. L. Notten, ‘‘Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications,’’ vol. 9. Springer, 2008.
    [6] S. Rodrigues, N. Munichandraiah, and A. K. Shukla, ‘‘Review of state-ofcharge indication of batteries by means of a.c. impedance measurements,’’ J. Power Sour., vol. 87, nos. 1–12, pp. 12–20, 2000.
    [7] X. Hu, F. Sun, and Y. Zou, ‘‘Comparison between two model-based algorithms for Li-ion battery SoC estimation in electric vehicles,’’ Simul. Model. Pract. Theory, vol. 34, pp. 1–11, May 2013.
    [8] G. L. Plett, ‘‘Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Background,’’ J. Power Sour., vol. 134, no. 2, pp. 252–261, 2004.
    [9] G. L. Plett, ‘‘Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification,’’ J. Power Sour., vol. 134, no. 2, pp. 262–276, 2004.
    [10] G. L. Plett, ‘‘Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation,’’ J. Power Sour., vol. 134, no. 2, pp. 277–292, 2004.
    [11] X. Hu, F. Sun, and Y. Zou, ‘‘Estimation of state of charge of a lithium-ion battery pack for electric vehicles using an adaptive Luenberger observer,’’ Energies, vol. 3, no. 9, pp. 1586–1603, 2010.
    [12] J. Xu, C. C. Mi, B. Cao, J. Deng, Z. Chen, and S. Li, ‘‘The state of charge estimation of lithium-ion batteries based on a proportional-integral observer,’’ IEEE Trans. Veh. Technol., vol. 63, no. 4, pp. 1614–1621, May 2014
    [13] F. Zhang, G. Liu, L. Fang, and H. Wang, ‘‘Estimation of battery state of charge with H∞ observer: Applied to a robot for inspecting power transmission lines,’’ IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1086–1095, Feb. 2012.
    [14] I.-S. Kim, ‘‘The novel state of charge estimation method for lithium battery using sliding mode observer,’’ J. Power Sour., vol. 163, no. 1, pp. 584–590, 2006.
    [15] I. S. Kim, ‘‘Nonlinear state of charge estimator for hybrid electric vehicle battery,’’ IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2027–2034, Jul. 2008.
    [16] 陳鵬倫、邱亦超、涂家政,鋰電池老化及健康狀態之估測,中華民國第三十三屆電力工程研討會,西元2012 年12月
    [17] J. D. Kozlowski, “A novel online measurement technique for AC impedance of batteries and other electrochemical systems,” The 16th Annu. Battery Conf., Jan. 9–12, 2001, pp. 257–262
    [18] B. Saha, K. Goebel, S. Poll, and J. Christophersen, ‘‘Prognostics methods for battery health monitoring using a Bayesian framework,’’ IEEE Trans. Instrum. Meas., vol. 58, no. 2, pp. 291–296, Feb. 2009.
    [19] W. He, N. Williard, M. Osterman, and M. Pecht, ‘‘Prognostics of lithiumion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method,’’ J. Power Sources, vol. 196, no. 23, pp. 10314–10321, Dec. 2011.
    [20] Y. Xing, E. W. M. Ma, K.-L. Tsui, and M. Pecht, ‘‘An ensemble model for predicting the remaining useful performance of lithium-ion batteries,’’ Microelectron. Rel., vol. 53, pp. 811–820, Jun. 2013.
    [21] D. Wang, F. Yang, Y. Zhao, and K.-L. Tsui, ‘‘Battery remaining useful life prediction at different discharge rates,’’ Microelectron. Rel., vol. 78, pp. 212–219, Nov. 2017.
    [22] J. Wu, C. Zhang, and Z. Chen, ‘‘An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks,’’ Appl. Energy, vol. 173, pp. 134–140, Jul. 2016.
    [23] R. Xiong, F. Sun, X. Gong, H. He, “Adaptive state of charge estimator for lithium-ion cells series battery pack in electric vehicles,” Journal of Power Sources, vol. 242, pp. 699-713, May. 2013.
    [24] Ahmed T. Elsayed, Christopher R. Lashway, Osama A. Mohammed,“Advanced Battery Management and Diagnostic System for Smart Grid Infrastructure,” IEEE Transactions on Smart Grid, vol. 7, pp. 897 – 905, Mar. 2016.
    [25] Quanqing Yu, Rui Xiong, Cheng Lin, Weixiang Shen, Junjun Deng,“Lithium-Ion Battery Parameters and State-of-Charge Joint Estimation Based on H-Infinity and Unscented Kalman Filters,” IEEE Transactions on Vehicular Technology, vol. 66, pp. 8693 – 8701, Oct. 2017.
    [26] D. Andre, C. Appel, T. Soczka-Guth, D. Sauer, “Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries,” Journal of Power Sources, vol. 224, pp. 20-27, Oct. 2012.
    [27] L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, “A review on the key issues for lithium-ion battery management in electric vehicles,” Journal of Power Sources, vol. 226, pp. 272-288, 2013.
    [28] L. Yarris, “Roots of the Lithium Battery Problem: Berkeley Lab Researchers Find Dendrites Start Below the Surface, ” Berkeley Lab, 22 May 2014. [Online]. Available: http://newscenter.lbl.gov/2013/12/17/roots-of-the-lithium-battery/.
    [29] Peter Mell, Timothy Grance. “The NIST Definition of Cloud Computing”. NIST.
    [30] Mell P., Grance T. “Effectively and Securely Using the Cloud Computing Paradigm”. NIST Information Technology Laboratory, 2010.
    [31] Beimborn Daniel, Miletzki Thomas, and Wenzel Stefan “Platform as a Service (PaaS),” Business & Information Systems Engineering: Vol. 3: Iss. 6, 381-384., 2011
    [32] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, Matei Zaharia, “A View of Cloud Computing”, Communications of the ACM, Vol. 53 No. 4, Pages 50-58, April 2010
    [33] E. Codds, “A relational model of data for large shared data banks,” 1970.
    [34] Vaish, G. “Getting started with NoSQL. 1st ed.,” 2013.
    [35] Google Inc., “Google Trends,” [Online]. Available: https://trends.google.com/
    [36] MongoDB, “MongoDB Manual 4.0,” [Online]. Available: https://docs.mongodb.com/manual/replication/.
    [37] W3C, “HTML 4.01 Specification.” [Online]. Available: http://www.w3.org/TR/html4/.
    [38] W3C, “What is CSS?” [Online]. Available: https://www.w3.org/standards/webdesign/htmlcss#whatcss
    [39] ECMA, “Standard ECMA-262 Javascript Specification.” [Online]. Available: https://www.ecma-international.org/publications/standards/Ecma-262.htm
    [40] Chrome, “Chrome V8 Introduction.” [Online]. Available: https://v8.dev/.
    [41] Square, “Crossfilter Introduction,” [Online]. Available: https://square.github.io/crossfilter/
    [42] Node.js, “About node.js,” [Online]. Available: https://nodejs.org/en/about/.
    [43] npm, “What is npm?” [Online]. Available: https://docs.npmjs.com/about-npm/index.html.
    [44] Charu Rudrakshi, Amit Varshney, Bharath Yadla, Rama Kanneganti, Kiran Somalwar, “API-fication,” HCL, August 2014.
    [45] Benslimane Djamal, Schahram Dustdar, Amit Sheth, “Services Mashups: The New Generation of Web Applications,” IEEE Internet Computing, vol. 12, no. 5. Institute of Electrical and Electronics Engineers. pp. 13–15, 2008.
    [46] Fielding R.T., “Architectural styles and the design of network-based software architectures,” 2000
    [47] Tutorials Point, “Basic MVC Architecture,” 2016. [Online]. Available: http://www.tutorialspoint.com/struts_2/basic_mvc_architecture.htm.
    [48] M. Fowler, “GUI Architectures,” July 2006. [Online]. Available: http://martinfowler.com/eaaDev/uiArchs.html.
    [49] Joachims, T., “Learning to Classify Text Using Support Vector Machines: Methods, Theory and Algorithms.” Kluwer Academic Publishers, 2002.
    [50] Furey, T. S. et al., “Support vector machine classification and validation of cancer tissue samples using microarray expression data.” Bioinformatics, Volume 16, pp. 906- 914, 2000.
    [51] Pavlidis, P., Cai, J., Weston, J. & Grundy, W. N., “Gene Functional Classification From Heterogeneous Data.” The Fifth International Conference on Computational Molecular Biology. New York: ACM Press, p. 249–255, 2001.
    [52] Ding, C. & Dubchak, I, “Multi-class protein fold recognition using support vector machines and neural networks.” Bioinformatics, Volume 17, p. 349–358, 2001.
    [53] Bahlmann, C., Haasdonk, B. & Burkhardt, H, “On-Line Handwriting Recognition with Support Vector Machines: A Kernel Approach.” Eighth International Workshop on Frontiers in Handwriting Recognition (IWFHR'02). Washington, DC, USA : IEEE Computer Society, p. 49, 2002.
    [54] Moghaddam, B. & Yang, M.-H, “Learning Gender with Support Faces.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), pp. 707-711, 2002.
    [55] 林頂立,“類神經網路於鉛酸電池殘電量偵測之應用.” 國立高雄應用科技大學電機工程系碩士論文,西元2007年六月
    [56] A. Affanni, A. Bellini, C. Concari, G. Franceschini, E. Lorenzani, and C. Tassoni, “EV battery state of charge:Neural network based estimation,” Electric Machines and Drives Conference, vol. 2, pp. 684– 688, 2002.
    [57] H. X. Lu, Y. Lu, Z. F. T, S. J. W, “SOC Dynamic Power Management Using Artificial Neural Network”, The Sixth International Conference On Intelligent Systems Design and Applications (ISDA ’06), 2006
    [58] Anand, I; Mathur, B.L., “State of charge estimation of lead acid batteries using neural networks,” 2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT), pp. 596, 599, Mar. 20-21, 2013
    [59] H.-T. Lin, T.-J. Liang, and S.-M. Chen, “Estimation of battery state of health using probabilistic neural network,” IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp. 679–685, May 2013.
    [60] J. Szoplik, ‘‘Forecasting of natural gas consumption with artificial neural networks,’’ Energy, vol. 85, pp. 208–220, Jun. 2015.
    [61] S. Hochreiter and J. Schmidhuber. ‘‘Long short-term memory.’’ Neural Computation, 9(8):1735–1780, 1997.
    [62] Nair, V., & Hinton, G. E. ‘‘Rectified linear units improve restricted boltzmann machines.’’ The 27th international conference on machine learning, pp. 807-814, 2010.
    [63] Graves, A., Mohamed, A. R., & Hinton, G., ‘‘Speech recognition with deep recurrent neural networks.’’ 2013 IEEE international conference on speech and signal processing, pp. 6645-6649, 2013.
    [64] Wang, S., & Jiang, J., ‘‘Learning natural language inference with LSTM.’’ arXiv preprint, arXiv:1512.08849, 2015.
    [65] You, Q., Jin, H., Wang, Z., Fang, C., & Luo, J., ‘‘Image captioning with semantic attention.’’ The IEEE Conference on Computer Vision and Pattern Recognition, pp. 4651-4659, 2016.
    [66] The Modbus Organization, ‘‘Modbus Application Protocol Specification.’’ V1.1b3, Retrieved March 31, 2009
    [67] The Modbus Organization, ‘‘MODBUS over serial line specification and implementation guide.’’ V1.02, Retrieved Dec. 20, 2006
    [68] T. Dozat., “Incorporating nesterov momentum into adam.” International Conference on Learning Representations, 2016.
    [69] Yurii Nesterov. “A method of solving a convex programming problem with convergence rate O(1/k2).” Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.
    [70] D Kingma, J Ba, “Adam: A method for stochastic optimization.” International Conference on Learning Representation, 2015
    [71] IEEE Standards Association, ‘‘IEEE Guide for the Interoperability of Energy Storage Systems Integrated with the Electric Power Infrastructure.’’, IEEE Std 2030.2™-2015, 2015.
    [72] Saha B, Goebel K, ‘‘Battery Data Set NASA Ames Prognostics Data Repository.’’ [Online]. Available: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
    [73] Zengkai Wang, Shengkui Zeng, Jianbin Guo, Taichun Qin, ‘‘Remaining capacity estimation of lithium-ion batteries based on the constant voltage charging profile.’’ PLoS ONE 13(7): e0200169, 2018.

    無法下載圖示 全文公開日期 2024/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE