簡易檢索 / 詳目顯示

研究生: Truong Le Bich Tram
Truong - Le Bich Tram
論文名稱: 新型環糊精/高分子複合材料的形成與特性及其應用
Formation and characterization of novel cyclodextrin containing polymeric inclusion complexes and their application
指導教授: 洪伯達
Po-Da Hong
口試委員: 葉明功教授
Ming-Kung Yeh
廖義田教授
Yih-Tyan Liao
蔡燕鈴教授
Yen-Ling Tsai
Hossein Hosseinkhani
Hossein Hosseinkhani
陳志堅教授
Jyh-Chien Chen
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 137
中文關鍵詞: Cyclodextrininclusion complexhydrogelmicellenucleating agent
外文關鍵詞: Cyclodextrin, inclusion complex, hydrogel, micelle, nucleating agent
相關次數: 點閱:268下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Structures with well-defined architectures and tailored physical properties can be produced by supramolecular self-assembly of polymeric inclusion complexes (ICs) consisting of cyclodextrins (CDs). Recently, there has been significant interest in the use of polymers to design novel supramolecular nanostructures as these polymers micelles and hydrogels under inclusion complexation. Cyclodextrins have the ability to spontaneously form complex structures with guest molecules. The complexation of polymers with CD induces self-assembed polymers which can be useful in various fields. This dissertation mainly focuses on the formation, characterization and application of some novel cyclodextrin inclusion complex-containing biodegradable polymeric systems. The dissertation begins with a detailed introduction followed by a description of the experiments in the second chapter.
The third chapter of the dissertation covers the synthesis of a new drug carrier obtained by using folic acid (FA) covalently incorporated into a supramolecular hydrogel network. For this attempt, FA was first conjugated with α-CD to form α-CD-FA and then used to interact with Poly(ethylene glycol) methyl ether (MPEG) in an aqueous solution. The formation of the supramolecular hydrogel, its gelation kinetics, mechanical strength, shear-thinning behavior and thixotropic response were investigated using nuclear magnetic resonance (1H NMR), wide angle X-ray diffraction (WAXD), Fourier-transform infrared (FT-IR) and rheological measurements with respect to the effects of MPEG and α-CD-FA amounts. Meanwhile, the possibility of using this hydrogel matrix for an injectable drug delivery system was also explored. From in vitro release and cell viability tests, it was found that the resultant hydrogel material has a great potential to act as an injectable matrix for the encapsulation and sustained release of the modelled drug, doxorubicin hydrochloride (Dox).
The fourth chapter of the dissertation explains the α-CD induced micellization of poly (ε-caprolactone-block-4-vinylpyridine) (PCL-b-P4VP) using selective inclusion of the α-CD rings onto a segment of PCL-b-P4VP by the formation of pseudopolyrotaxane-b-P4VP. The formation of micelle in aqueous media was studied. The supramolecular structure of the nano-sized micelles was demonstrated by using transmission electron microscopy (TEM), atomic force microscopy (AFM) and dynamic light scattering (DLS). It was found that pseudopolyrotaxane-b-P4VP can form into self-assembled core-shell micelles. The resultant complex micelles consist of PCL/α-CD ICs core with P4VP chains as the shell, and they have a well-defined spherical morphology. The number of P4VP segments to PCL segments in PCL-b-P4VP can influence the structure of the resultant complex micelles. The arrangement of pseudopolyrotaxane-b-P4VP in ‘‘channel-type’’ crystallites derived from supramolecular columns is confirmed from the WAXD patterns. The pseudopolyrotaxane-b-P4VP based micelles were studied by cell viability testing, and the results revealed that both of them showed excellent cytocompatibility. Dox was successfully loaded into the micelles with a loading content of 14.4% and loading efficiency of 28.9% by using UV-Vis spectroscopy (UV). The Dox loaded micelles showed lower cytotoxicity than free drugs, and could efficiently deliver and release the drug into human hepatocellular carcinoma (Hep-G2) cells as confirmed by confocal laser scanning microscopy (CLSM). These properties make the polymer micelles attractive as drug carriers for pharmaceutical applications.
The last chapter of the dissertation includes the polymorphic crystallization behavior of poly (1,4-butylene adipate) (PBA) in the presence of nucleation agents such as the α-CD IC with PBA (PBAIC) and IC of the poly(ε-caprolactone) (PCLIC). The formation of PBAIC and PCLIC were characterized and confirmed using 1H NMR, FT-IR and WAXD. The differential scanning calorimetry (DSC) and WAXD results suggested that some of the PBA segments remained outside the α-CD cavity even after forming IC with α-CD. WAXD investigation also confirmed that the ICs adopted a channel structure. The obtained ICs were found to exhibit nucleation effects on the crystallization and polymorphic behavior of PBA as shown by DSC and polarized optical microscopy (POM). The pure PBA shows a polymorphic crystallization behavior based on the rate of cooling from the melting state. When the cooling rate is decreased, the crystal structures change from the β-form to the α-form and vice versa. The PBA blended with nucleating agents show higher crystallization temperatures than pure PBA. Nucleating agents preferably initiate the nucleation of the α-form crystal of PBA, which is thermodynamically more stable than that of the β-form crystal of PBA. The nucleating activity of the PCLIC during the crystallization of the PBA is higher than that of PBAIC.


Structures with well-defined architectures and tailored physical properties can be produced by supramolecular self-assembly of polymeric inclusion complexes (ICs) consisting of cyclodextrins (CDs). Recently, there has been significant interest in the use of polymers to design novel supramolecular nanostructures as these polymers micelles and hydrogels under inclusion complexation. Cyclodextrins have the ability to spontaneously form complex structures with guest molecules. The complexation of polymers with CD induces self-assembed polymers which can be useful in various fields. This dissertation mainly focuses on the formation, characterization and application of some novel cyclodextrin inclusion complex-containing biodegradable polymeric systems. The dissertation begins with a detailed introduction followed by a description of the experiments in the second chapter.
The third chapter of the dissertation covers the synthesis of a new drug carrier obtained by using folic acid (FA) covalently incorporated into a supramolecular hydrogel network. For this attempt, FA was first conjugated with α-CD to form α-CD-FA and then used to interact with Poly(ethylene glycol) methyl ether (MPEG) in an aqueous solution. The formation of the supramolecular hydrogel, its gelation kinetics, mechanical strength, shear-thinning behavior and thixotropic response were investigated using nuclear magnetic resonance (1H NMR), wide angle X-ray diffraction (WAXD), Fourier-transform infrared (FT-IR) and rheological measurements with respect to the effects of MPEG and α-CD-FA amounts. Meanwhile, the possibility of using this hydrogel matrix for an injectable drug delivery system was also explored. From in vitro release and cell viability tests, it was found that the resultant hydrogel material has a great potential to act as an injectable matrix for the encapsulation and sustained release of the modelled drug, doxorubicin hydrochloride (Dox).
The fourth chapter of the dissertation explains the α-CD induced micellization of poly (ε-caprolactone-block-4-vinylpyridine) (PCL-b-P4VP) using selective inclusion of the α-CD rings onto a segment of PCL-b-P4VP by the formation of pseudopolyrotaxane-b-P4VP. The formation of micelle in aqueous media was studied. The supramolecular structure of the nano-sized micelles was demonstrated by using transmission electron microscopy (TEM), atomic force microscopy (AFM) and dynamic light scattering (DLS). It was found that pseudopolyrotaxane-b-P4VP can form into self-assembled core-shell micelles. The resultant complex micelles consist of PCL/α-CD ICs core with P4VP chains as the shell, and they have a well-defined spherical morphology. The number of P4VP segments to PCL segments in PCL-b-P4VP can influence the structure of the resultant complex micelles. The arrangement of pseudopolyrotaxane-b-P4VP in ‘‘channel-type’’ crystallites derived from supramolecular columns is confirmed from the WAXD patterns. The pseudopolyrotaxane-b-P4VP based micelles were studied by cell viability testing, and the results revealed that both of them showed excellent cytocompatibility. Dox was successfully loaded into the micelles with a loading content of 14.4% and loading efficiency of 28.9% by using UV-Vis spectroscopy (UV). The Dox loaded micelles showed lower cytotoxicity than free drugs, and could efficiently deliver and release the drug into human hepatocellular carcinoma (Hep-G2) cells as confirmed by confocal laser scanning microscopy (CLSM). These properties make the polymer micelles attractive as drug carriers for pharmaceutical applications.
The last chapter of the dissertation includes the polymorphic crystallization behavior of poly (1,4-butylene adipate) (PBA) in the presence of nucleation agents such as the α-CD IC with PBA (PBAIC) and IC of the poly(ε-caprolactone) (PCLIC). The formation of PBAIC and PCLIC were characterized and confirmed using 1H NMR, FT-IR and WAXD. The differential scanning calorimetry (DSC) and WAXD results suggested that some of the PBA segments remained outside the α-CD cavity even after forming IC with α-CD. WAXD investigation also confirmed that the ICs adopted a channel structure. The obtained ICs were found to exhibit nucleation effects on the crystallization and polymorphic behavior of PBA as shown by DSC and polarized optical microscopy (POM). The pure PBA shows a polymorphic crystallization behavior based on the rate of cooling from the melting state. When the cooling rate is decreased, the crystal structures change from the β-form to the α-form and vice versa. The PBA blended with nucleating agents show higher crystallization temperatures than pure PBA. Nucleating agents preferably initiate the nucleation of the α-form crystal of PBA, which is thermodynamically more stable than that of the β-form crystal of PBA. The nucleating activity of the PCLIC during the crystallization of the PBA is higher than that of PBAIC.

Contents Chapter 1 Introduction 1 1.1 Cyclodextrin (CD) 1 1.1.1 History of cyclodextrin 1 1.1.2 Cyclodextrins’ structural features and properties 3 1.1.3 Applications of cyclodextrins 6 1.2 Cyclodextrin based inclusion complexes 6 1.2.1 General introduction of inclusion complex 6 1.2.2 Structure of the cyclodextrin based inclusion complexes 9 1.2.3 Cyclodextrin based pseudopolyrotaxane and polyrotaxane 10 1.2.4 Techniques for characterization of inclusion complexation 12 1.2.5 Applications of the inclusion complex 14 1.3 Inclusion complex-containing polymeric systems (PIC) 15 1.3.1 General introduction to inclusion complex-containing polymeric systems 15 1.3.2 Cyclodextrin-based supramolecular hydrogels or micelles for drug delivery 16 1.3.2.1 General consideration of supramolecular self assemblies based on CD 16 1.3.2.2 Cyclodextrin-based supramolecular hydrogels for drug delivery 18 1.3.2.3 Supramolecular structured micelles based on cyclodextrin for drug delivery 26 1.3.3 Cyclodextrin based supramolecular inclusion complexes as nucleating agents on biodegradable polymers 31 1.4 Aim and objectives of this dissertation 34 Chapter 2 Experimental section 37 2.1 Materials 37 2.2 Methods 37 2.2.1 Conjugation of FA to α-CD (α-CD-FA) 37 2.2.2 Supramolecular hydrogelation and its characterization 38 2.2.3 In vitro cytotoxicity of Dox-loaded supramolecular hydrogelation and micelles 38 2.2.4 Preparation of Dox-encapsulated in supramolecular hydrogel and in vitro release 40 2.2.5 Preparation of pseudopolyrotaxane-b-P4VP 41 2.2.6 Preparation of Dox-loaded micelles and in vitro release 41 2.2.7 Formation of inclusion complexes of PBA and PCL 42 2.2.8 Blend of the PBA with ICs 43 2.3 Measurements 43 2.3.1 1H NMR spectroscopy 43 2.3.2 FT-IR spectroscopy 43 2.3.3 X-ray diffraction (XRD) 44 2.3.4 Differential scanning calorimetry (DSC) 44 2.3.5 Dynamic light scattering (DLS) 44 2.3.6 Polarized optical microscopic (POM) 45 2.3.7 Transmission electron microscopy (TEM) 45 2.3.8 Atomic force microscopy (AFM) 45 2.3.9 Confocal laser scanning microscopy (CLSM) 45 2.3.10 UV-Vis Spectroscopy 45 2.3.11 Rheological analyses 46 Chapter 3 Supramolecular hydrogel based on Poly (ethylene glycol) methyl ther- α-cyclodextrin inclusion complex: a carrier for drug doxorubicin hydrochloride. 47 3.1 Introduction 47 3.2 Results and discussion 49 3.2.1 Preparation and characterization of MPEG/α-CD-FA supramolecular hydrogels 49 3.2.2 In vitro toxicity study 61 3.2.3 In vitro release behavior of encapsulated Dox from MPEG/α-CD-FA supramolecular hydrogels. 62 3.3 Conclusion 64 Chapter 4 The formation and characterization of the α-cyclodextrin induced micellization of poly(ε-caprolactone-block-4-vinylpyridine) for drug delivery 66 4.1 Introduction 66 4.2 Results and discussion 68 4.2.1 Formation of the pseudopolyrotaxane-b-P4VP 68 4.2.2 In vitro cytotoxicity of Dox-loaded micelles 76 4.2.3 Loading and in vitro release of Dox from pseudopolyrotaxane-b-P4VP micelles 80 4.3 Conclusion 83 Chapter 5 Nucleation effect of α-cyclodextrin inclusion complexes on crystallization behaviors of biodegradable poly (1,4-butylene adipate) 85 5.1 Introduction 85 5.2 Results and discussion 86 5.2.1 Formation of inclusion complexes 86 5.2.2 Nonisothermal crystallization and melting behavior of PBA containing nucleating agents 91 5.2.3 Isothermal crystallization behavior of PBA containing nucleating agents. 96 5.2.4 Spherulitic morphology of PBA containing nucleating agents 98 5.3 Conclusion 101 Chapter 6 Summary 103 Chapter 7 Bibliography 105

Bibliography

1. Szetjli, J. Chem. Rev. 1998, 98, 1743
2. Loftsson, T.; Duchene, D. Int. J. Pharm. 2007, 329, 1
3. Freundenberg, K.; Cramer, F.; Plieninger, H. In Chemische Fabriken; A.-G., K., Ed. Germany, 1953, Vol. 895,769, 5.
4. Dodziuk, H. Ed. Cyclodextrins and Their Complexes, Wiley-VCH: Weinheim, 2006
5. Fromming, K. H.; Szejtli, J. Cyclodextrins in Pharmacy; Kluwer Academic Publishers: Dordrecht, 1994
6. Larsen, K. L. J. Inclusion Phenom. Macrocyclic Chem. 2002, 43, 1
7. Ueda, H. J. Inclusion Phenom. Macrocyclic Chem. 2002, 44, 53
8. Scanlon, S.; Aggeli, A. Nano Today, 2008, 3, 22
9. Grimme, S. Angew. Chem., Int. Ed. 2008, 47, 3430
10. Pasini, D.; Ricci, M. Curr. Org. Synth. 2007, 4, 59
11. Ni, B. B.; Yan, Q.; Ma, Y.; Zhao, D. Coord. Chem. Rev. 2010, 254, 954
12. Zang, L.; Che, Y.; Moore, J. S. Acc. Chem. Res. 2008, 41, 1596
13. Rodnikova, M. N. J. Mol. Liq. 2007, 136, 211
14. Pyun, J.; Zhou, X. Z.; Drockenmuller, E.; Hawker, C. J. J.Mater. Chem. 2003, 13, 2653
15. Szente, L.; Szetjli, J. Trends Food Sci. Technol. 2004, 14, 137
16. Davis, M. E.; Brewster, M. E. Nat. ReV. Drug DiscoVery 2004, 3, 1023
17. Rajewski, R. A.; Stella, V. J. J. Pharm. Sci. 1996, 85, 1142
18. Brewster, M. E.; Loftsson, T. AdV. Drug DeliVery ReV. 2007, 59, 645
19. Cal, K.; Centkowska, K. Eur. J. Pharm. Biopharm. 2008, 68, 467
20. Buschmann, H. J.; Schollmeyer, E. J. Cosmet. Sci. 2002, 53, 185
21. Crini, G.; Morcellet, M. J. Sep. Sci. 2002, 25, 789
22. Baudin, C.; Pean, C.; Perly, B.; Goselin, P. Int. J. EnViron. Anal. Chem. 2000, 77, 233
23. Hashimoto, H. J. Inclusion Phenom. Macrocyclic Chem. 2002, 44, 57
24. Schneiderman, E.; Stalcup, AM. J. Chromatogr B 2000, 745, 83
25. Schmid, G. Trends Biotechnol 1989, 7, 244
26. McMullan, R. K.; Saenger, W.; Fayos, J.; Moorz, D. Carbohydr. Res.1973, 31, 37
27. Li, J.; Loh, X. Adv. Drug Delivery Rev 2008, 60, 1000
28. Frampton, M. J.; Anderson, H. L. Angew. Chem., Int. Ed. 2007, 46, 1028
29. Yang C.; Li, J. J. Phys. Chem. B 2009, 113, 682
30. Liu, Y.; Wang, K.-R.; Guo, D.-S.; Jiang, B.-P. Adv. Funct. Mater. 2009, 19, 2230
31. Udachin, K. A.; Wilson, L. D.; Ripmeester, J. A.; J. Am. Chem. Soc. 2000, 122, 12375
32. Kamitori, S.; Matsuzaka, O.; Kondo, S.; Muraoka, S.; Okuyama, K.; Noguchi, K.; Okada, M.; Harada, A. Macromolecules 2000, 33, 1500
33. Okada, M.; Kamachi M.; Harada, A. Macromolecules 1999, 32, 7202
34. Harata, M. J. Am. Chem. Soc. 1993, 115, 3702
35. Harada, A.; Adachi, H.; Kawaguchi, Y.; Kamachi, M. Macromolecules 1997, 30, 5181
36. Liu, Y.; Wang, H.; Chen, Y.; Ke, C.-F.; Liu, M. J. Am. Chem. Soc. 2005, 127, 657
37. Liu, Y.; Song, Y.; Wang, H.; Zhang, H.-Y.; Li, X.-Q. Macromolecules 2004, 37, 6370
38. Yang, Y.-W.; Chen, Y.; Liu, Y. Inorg. Chem. 2006, 45, 3014
39. Shigekawa, H.; Miyake, K.; Sumaoka, J.; Harada, A.; Komiyama, M. J. Am. Chem. Soc. 2000, 122, 5411
40. Jeromin, J.; Ritter, H. Macromolecules 1999, 32, 5236
41. Jeromin, J.; Noll, O.; Ritter, H. Macromolecular Chemistry and Physics 1998, 199, 2641
42. Martel, B.; Morcellet, M. Eur. Polym. J. 1995, 31, 1089
43. Fundueanu, G.; Constantin, M.; Mihai, D.; Bortolotti, F.; Cortesi, R.; Ascenzi, P.; Menegatti, E. J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. 2003, 791, 407
44. Quaglia, F.; Varricchio, G.; Miro, A.; La Rotonda, M. I.; Larobina, D.; Mensitieri, G. J. Controlled Release 2001, 71, 329
45. Bibby, D. C.; Davies, N. M.; Tucker, I. G. Int. J. Pharm. 2000, 197, 1
46. Szejtli, J. Carbohydr. Polym. 1990, 12, 375
47. Conn, M. M.; Rebek, J. Chem. Rev. 1997, 97, 1647
48. Orprecio, R.; Evans, C. H. J. Appl. Polym. Sci. 2003, 90, 2103
49. Plackett, D.; Ghanbari-Siahkali, A.; Szente, L. J. Appl. Polym. Sci. 2007, 105, 2850
50. Li, R.; Jiang, Z. T.; Wang, R. X. Food Anal. Methods 2009, 2, 264
51. Xiao, Y.; Ong, T. T.; Tan, T. T. Y.; Ng, S. C. J. Chromatogr., A 2009, 1216, 994
52. Ong, T. T.; Tang, W.; Muderawan, W.; Ng, S. C.; Chan, H. S. O.; Electrophoresis 2005, 26, 3839
53. Lopedota, A.; Trapani, A.; Cutrignelli, A.; Laquintana, V.; Denora, N.; Franco, M.; Trapani, G.; Liso, G. J. Inclusion Phenom. Macrocyclic Chem. 2007, 57, 425
54. He, Y.; Inoue, Y. Biomacromolecules. 2003, 4, 1865
55. Dong, T.; He, Y.; Zhu, B.; Shin, K.; Inoue, Y. Macromolecules 2005, 38, 7736
56. Li, C.; Isshiki, N.; Saito, H.; Kohno, K.; Toyota, A. J. Appl Polym Sci. 2010, 115, 1098
57. Li, C.; Isshiki, N.; Saito, H.; Kohno, K.; Toyota, A. J. Polym. Sci., Part B: Polym. Phys. 2010, 48, 389
58. Wenz, G. Angew. Chem., Int. Ed. Engl. 1994, 33, 803
59. Herrmann, W.; Keller, B.; Wenz, G. Macromolecules 1997, 30, 4966
60. Li, J.; Ni, X. P.; Zhou, Z. H.; Leong, K. W. J. Am. Chem. Soc. 2003, 125, 1788
61. Choi, H. S.; Ooya, T.; Sasaki, S.; Yui, N. Macromolecules 2003, 36, 5342
62. Fujita, H.; Ooya, T.; Yui, N. Macromolecules 1999, 32, 2534
63. Harada, A.; Li, J.; Kamachi, M. J. Am. Chem. Soc. 1994, 116, 3192
64. Harada, A.; Okada, M.; Li, J.; Kamachi, M. Macromolecules 1995, 28, 8406
65. Harada, A.; Nishiyama, T.; Kawaguchi, Y.; Okada, M.; Kamachi, M. Macromolecules 1997, 30, 7115
66. Oh, J. K.; Drumright, R.; Siegwart, D. J.; Matyjaszewski, K. Prog.Polym. Sci. 2008, 33, 448
67. Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. AdV. Mater.2006, 18, 1345
68. Lehn, J. M. Supramolecular Chemistry-Concepts and Perspectives, VCH: Germany, 1995
69. Jonathan, D. R. T.; Steed, W.; Wallace, K. J. Core Concepts in Supramolecular Chemistry and Nanotechnology, Jon Wiley & Sons, Ltd, 2007
70. Sauvage, J.-P.; Dietrich-Buchecker, C. Molecular Catenanes, Rotaxanes and Knots, VCH: Germany, 1999
71. Semlyen, J. A. Cyclic Polymers, Kluwer Academic Publishers: USA, 2000
72. Raymo, F. M.; Stoddart, J. F. Chem. Rev.1999, 99, 1643
73. Chichak, K. S. et al. Science 2004, 304, 1308
74. Schmieder, R.; Hübner, G.; Seel, C.; Vögtle, F. Angew. Chem. Int. Ed. 1999, 38, 3528
75. Vögtle, F.; Dünnwald, T.; Schmidt, T. Accounts Chem. Res. 1996, 29, 451
76. Gibson, H. W.; Bheda, M. C.; Engen, P. T. Prog. Polym. Sci. 1994, 19, 843
77. Reinhoudt, D.; Atwood, J.; Lehn, J.-M. Comprehensive Supramolecular Chemistry, Pergamon Press: Oxford, 1996
78. Seiffert, S.; Sprakel, J. Chem. Soc. Rev. 2012, 41, 909
79. Bender, M. L.; Komiyama, M. Cyclodextrin Chemistry, Springer-Verlag: Germany, 1978
80. Szejtli, J. Cyclodextrins and their Inclusion Complexes, Akademiai Kiado: Hungary, 1982
81. Wenz, G.; Han, B. H.; A. Müller Chem. Rev.2006, 106, 782
82. Chen, Y.; Liu, Y. Chem. Soc. Rev.2010, 39, 495
83. Harada, A.; Takashima, Y.; Yamaguchi, H. Chem. Soc. Rev. 2009, 38, 875
84. De Greef, T. F. A.; Smulders, M. M. J.; Wolffs, M.; Schenning, A. P. H. J.; Sijbesma, R. P. Meijer, E. W. Chem. Rev., 2009, 109, 5687
85. Zayed, J. M.; Nouvel, N.; Rauwald, U.; Scherman, O. A. Chem. Soc. Rev. 2010, 39, 2806
86. Rekharsky, M. V.; Inoue, Y. Chem. Rev. 1998, 98, 1875
87. Huang, X.; Terech, P.; Raghavan, S. R.; Weiss, R. G. J. Am. Chem. Soc. 2005, 127, 4336
88. Lutolf, M. P. Nat. Mater. 2009, 8, 451
89. Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Mueller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B. I. Szleifer, Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Nat. Mater. 2010, 9, 101
90. Li, J.; Xu, L.; Ni, X.; Wang, X.; Li, H.; Leong, K. W. Biomaterials 2006, 27, 4132
91. Li, J.; Ni, X. P.; Leong, K. W. J. Biomed. Mater. Res. A 2003, 65A, 196
92. Wang, J; Li, L; Zhu, YY.; Liu, P.; Guo, XH. Asia Pac J Chem Eng 4 2009, 5, 544
93. Li, J.; Harada, A.; Kamachi, M. Polym J 1994, 26 (9), 1019
94. Li, X.; Li, J.; Leong, KW. Polymer 2004, 45(20), 6845
95. Huh, K. M. et al. Macromolecules 2001, 34, 8657
96. Huh, K. M. et al. Macromol. Biosci.2004, 4, 92
97. Nakama, T.; Ooya, T.; Yui, N. Polym. J.2004, 36, 338
98. Zhao, S.; Lee, J.; Xu, W. Carbohydr. Res. 2009, 344, 2201
99. Joung, Y.-K.; Ooya, T.; Yamaguchi, M.; Yui, N. Adv. Mater. 2007, 19, 396
100. Bandara, H. M. D.; Burdette, S. C. Chem. Soc. Rev. 2012, 41, 1809
101. Dawn, M. B.; Dewal, D.; Sobransingh, M. C.; Paderes, A. C.; Wibowo, M. D.; Smith, J. A.; Krause, P. J.; Pellechia, L. S.; Shimizu, J. Am. Chem. Soc. 2011, 133, 7025
102. Wang, Y. C.; Wu, J.; Li, Y.; Du, J. Z.; Yuan, Y. Y.; Wang, J. Chem. Commun. 2010, 46, 3520
103. Gust, D.; Andre´asson, J.; Pischel, U.; Moore, T. A.; Moore, A. L. Chem. Commun. 2012, 48, 1947
104. Yu, Z.; Hecht, S. Angew. Chem., Int. Ed. 2011, 50, 1640
105. Yaroshchuk, O.; Reznikov, Y. J. Mater. Chem. 2012, 22, 286
106. Wu, W.; Yao, L.; Yang, T.; Yin, R.; Li, F.; Yu, Y. J. Am. Chem. Soc. 2011, 133, 15810
107. Liao, X.; Chen, G.; Liu, X.; Chen, W.; Chen, F.; Jiang, M. Angew. Chem., Int. Ed. 2010, 49, 4409
108. Ooya, T.; Yui, N. J. Control. Release 1999, 58 (3), 251
109. Yui, N.; Ooya, T.; Kumeno, T. Bioconjug. Chem. 1998, 9 (1), 118
110. Gosselet, N.; Beucler, M.; Renard, F. E.; Amiel, C.; Sebille, B. Colloids Surf., A 1999, 155, 177
111. Zhang, H. S.; Hogen-Esch, T. E.; Boschet, F.; Margaillan, A. Langmuir 1998, 14, 4972
112. Hashidzume, A.; Tomatsu, I.; Harada, A. Polymer 2006, 47, 6011
113. Bu, H.; Naess, S. N.; Beheshti, N.; Zhu, K. Z.; Knudsen, K. D.; Kjoniksen, A. L.; Elgsaeter, A.; Nystrom, B. Langmuir 2006, 22, 9023
114. Burckbuchler, V.; Kjoniksen, A. L.; Galant, C.; Lund, R.; Amiel, C.; Knudsen, K. D.; Nystrom, B. Biomacromolecules 2006, 7, 1871
115. Kornysova, O.; Surna, R.; Snitka, V.; Pyell, U.; Maruska, A. J. Chromatogr., A 2002, 971, 225
116. Hamcerencu, M.; Desbrieres, J.; Popa, M.; Riess, G. Biomacromolecules 2009, 10, 1911
117. Moine, L.; Amiel, C.; Brown, W.; Guerin, P. Polym. Int. 2001, 50, 663
118. Liu, J. H.; Sondjaja, H. R.; Tam, K. C. Langmuir 2007, 23, 5106
119. Liu, Y.; Zhao, D.; Ma, R.; Xiong, D.; An, Y.; Shi, L. Polymer 2009, 50, 855
120. Yuan, RX.; Shuai, XT. J. Polym. Sci. B Polym. Phys. 2008, 46(8), 782
121. Du, Jiaojiao; Guo, Xin; Tu, Jiaxing; Xiao, Longqiang; Jia, Xiangxiang; Liao, Liqiong; Liu, Lijian Carbohydrate Polymers 2012, 90, 569
122. Minke, R.; Blackwell, J. J. Macromol. Sci., Phys. 1979, B16, 407
123. Huo, H.; Jiang, S.; An, L. Macromolecules 2004, 37, 2478
124. Levi, N.; Czerw, R.; Xing, S.; Lyer, P.; Carroll, D. L. Nano Lett 2004, 4, 1267
125. Marco, C.; Gomez, M. A.; Ellis, G.; Arribas, J. M. J. Appl. Polym. Sci. 2002, 86, 531
126. Kai, W.; Zhu, B.; He, Y.; Inoue, Y. J. Polym. Sci., Part B: Polym. Phys. 2005, 43, 2340
127. Dong, Tungalag; Shin, Kyung-moo; Zhu, Bo; Inoue, Yoshio Macromolecules 2006, 39, 2427
128. Yan, J.; Yang, L.; Wang, G.; Xiao, Y.; Zhang, B.; Qi, N. J. Biomater Appl 2010, 24, 625
129. Wang, P.; Chow, H.; Tsai, W.; Fang, H. J Biomater Appl 2009, 23, 347
130. Yang, Z.; Liang, G.; Abbah, A.; Lu, W.; Xu, B. Chem Commun 2007, 843
131. Harada, A.; Hashidzume, A.; Takashima, Y. Adv Polym Sci 2006, 1
132. Grinstaff, M. Biomaterials 2007, 28, 5205
133. Ceccato, M; Nostro, P; Baglioni, P. Langmuir 1997, 13, 2436
134. Yui, N.; Ooya, T. Chem Eur J 2006, 12, 6730
135. Wang, T.; Jiang, X. J.; Lin, T.; Ren, S.; Li, X. Y.; Zhang, X. Z.; Tang, Q. Z. Biomaterials 2009, 30, 4161
136. Ma, D.; Tu, K.; Zhang, L. M. Biomacromolecules 2010, 11, 2204
137. Zhu, W.; Li, Y.; Liu, L.; Chen, Y.; Wang, C.; Xi, F. Biomacromolecules 2010, 11, 3086
138. Sudimack, J.; Lee, R. J. Adv. Drug Del. Rev. 2000, 41, 147
139. Turek, J. J.; Leamon, C. P.; Low, P. S. J. Cell. Sci. 1993, 106, 423
140. Garin-Chesa, P.; Campbell, I.; Saigo, P. E.; Lewis, J. L. Jr.; Old, L. J.; Rettig, W. J. Am. J. Pathol. 1993, 142, 557
141. Lee, RJ; Low, PS. J. Biol Chem. 1994, 269, 3198
142. Guo, W; Hinkle, GH; Lee, RJ. J Nucl Med. 1999, 40, 1563
143. Van Steenis, JH.; Van Maarseveen, EM.; Verbaan, FJ.; Verrijk, R.; Crommelin, DJA. J Control Release. 2003, 87, 167
144. Aronov, O.; Horowitz, AT.; Gabizon, A.; Gibson, D. Bioconjug Chem. 2003, 14, 563
145. Yoo, HS.; Park, TG. J Control Release. 2004, 96, 273
146. Hattori, Y.; Maitani, Y. J Control Release. 2004, 97, 173
147. Yang, Y.; Jiang, JS.; Du, B.; Gan, ZF.; Qian, M.; Zhang, P. J Mater Sci: Mater Med. 2009, 20, 301
148. Wang, Y.; Bansal, V.; Zelikin, AN.; Frank, C. Nano Lett. 2008, 8, 1741
149. Zhao, S. P.; Zhang, L. M.; Ma, D. J. Phys. Chem. B 2006, 110, 12225
150. Huh, K. M.; Ooya, T.; Sasaki, S.; Yui, N. Macromolecules 2001, 34, 2402
151. Ma, D.; Zhang, L. M. J. Phys. Chem. B 2008, 112, 6315
152. Ma, D.; Xie, X.; Zhang, L. M. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 740
153. Lu, J.; Shin, I.; Nojima, S.; Tonelli, A. Polymer 2000, 41, 5871
154. Rusa, C.; Tonelli, A. Macromolecules 2000, 33, 1813
155. Winter, H. H.; Chambon, F. J. Rheol. 1986, 30, 367
156. Wulff, M.; Ald_en, M. Eur. J. Pharm. Sci. 1999, 8, 269
157. Johnson, S. B.; Dustan, D. E.; Franks, G. V. Colloid Polym. Sci. 2004, 282, 602
158. Moura, M. J.; Figueiredo, M. M.; Gil, M. H. Biomacromolecules 2007, 8, 3823
159. Chiu, Y. L.; Chen, S. C.; Su, C. J.; Hsiao, C. W.; Chen, Y. M.; Chen, H. L.; Sung, H. W. Biomaterials 2009, 30, 4877
160. Kretlow, J. D.; Klouda, L.; Mikos, A. G. Adv. Drug Delivery Rev. 2007, 59, 263
161. Saunders, F. L. J. Colloid Interface Sci. 1967, 23, 230
162. Ghannam, M. T.; Esmail, M. N. J. Appl. Polym. Sci. 1997, 64, 289
163. Franson, N. W.; Peppas, N. A. J. Appl. Polym. Sci. 1983, 28, 1299
164. Safont-Sempere, M. M.; Fernandez, G.; Würthner, F. Chem. Rev. 2011, 111, 5784
165. Rybtchinski, B. ACS Nano 2011, 5(9), 6791
166. Wintgens, V.; Layre, A.M.; Hourdet, D.; Amiel, C. Biomacromolecules 2012, 13, 528
167. Chen, G.; Jiang, M. Chem. Soc. Rev. 2011, 40, 2254
168. van de Manakker, F.; Vermonden, T.; van Nostrum, C.F.; Hennink, W.E. Biomacromolecules 2009, 10, 3157
169. Tu, C.W.; Kuo, S.W.; Chang, F.C. Polymer 2009, 50(13), 2958
170. Zhanga, J.; Ma, P.X. Nano Today 2010, 5(4), 337
171. Alexandridis, P.; Lindman, B. Am phiphilic Block Copolymers: Self-Assembly and Applications 2000, Elsevier, Amsterdam
172. Hu, Z.; Jonas, A.M.; Varshney, S. K.; Gohy, J. F. J. Am. Chem. Soc. 2005, 127, 6526
173. Fujita, N.; Yamashita, T.; Asai, M.; Shinkai, S. Angew. Chem. Int. Ed. 2005, 44, 1257
174. Wang, Y.; Zhang, M.; Moers, C.; Chen, S.; Xu, H.; Wang, Z.; Zhang, X.; Li, Z. Polymer 2009, 50, 4821
175. Lu, C.H.; Huang, C.F.; Kuo,S.W.; Chang, F.C. Macromolecules 2009, 42, 1067
176. Lia, J.; Chen, B.; Wang, X.; Goh, S.H. Polymer 2004, 45, 1777
177. Hoogsteen, W.; Postema, A. R.; Pennings, A. J.; Ten Brinke, G. Macromolecules 1990, 23, 634
178. Furuhashi, Y.; Iwata, T.; Kimura, Y.; Doi, Y. Macromol. Biosci. 2003, 3, 462
179. Minke, R.; Blackwell, J. J. Macromol. Sci., Phys. 1980, B18, 233
180. Keller, A.; Cheng, S. Z. D. Polymer 1998, 39, 4461
181. Gan, Z.; Abe, H.; Doi, Y. Macromol. Chem. Phys. 2002, 203, 2369
182. Gan, Z.; Kuwabara, K.; Abe, H.; Iwata, T.; Doi, Y. Biomacromolecules 2004, 5, 371
183. Woo, E. M.; Wu, M. C. J. Polym. Sci., Part B: Polym. Phys. 2005, 43, 1662
184. Gan, Z.; Kuwabara, K.; Abe, H.; Iwata, T.; Doi, Y. Polym. Degrad. Stab. 2005, 87, 191
185. Ren, J.; Fu, H. Y.; Ren, T. B.; Yuan, W. Z. Carbohydr. Polym. 2009, 77, 576
186. Noguchi, K.; Kondo, H.; Ichikawa, Y.; Okuyama, K.; Washiyama, J. Polymer 2005, 46, 10823
187. Yuan, H.; Liu, Z.; Ren, J. Polym. Eng. Sci. 2009, 49, 1004
188. Lu, J.; Qiu, Z.; Yang, W. Polymer 2007, 48, 4196
189. Yan, C.; Zhang, Y.; Hu, Y.; Ozaki, Y.; Shen, D.; Gan, Z.; Yan, S.; Takahashi, I. J. Phys. Chem. B 2008, 112, 3311
190. Dong, T.; Kai, W.; Inoue, Y. Macromolecules. 2007, 40, 8285
191. Liang, Z.; Pan, Pengju.; Zhu, B.; Inoue, Y. Macromolecules. 2010, 43, 6429
192. Yang, J.; Pan, P.; Hua, L.; Zhu, B.; Dong, T.; Inoue, Y. Macromolecules. 2010, 43, 8610
193. Jiang, N.; Zhao, L.; Gan, Z. Polym. Degrad. Stab. 2010, 95, 1045
194. He, Y.; Inoue, Y. Polym. Int. 2000, 49, 623
195. Dong, T.; He, Y.; Shin, K.; Inoue, Y. Macromol. Biosci. 2004, 4, 1084
196. Avrami, M. J Chem Phys 1940, 8, 212

QR CODE