簡易檢索 / 詳目顯示

研究生: ALEM GEBRELIBANOS HAILU
ALEM GEBRELIBANOS HAILU
論文名稱: 高性能鋰離子電池用聚合物刷和自組裝層改性和表徵納米矽表面
Modification and Characterization of Nano Silicon Surface with Polymer Brush and Self-Assembled Layer for High-Performance Lithium-Ion Batteries
指導教授: 王復民
Fu-Ming Wang
口試委員: 張仍奎
Jeng-Kuei Chang
林正裕
Jeng-Yu Lin
張家欽
Chia-Chin Chang
王復民
Fu-Ming Wang
吳乃立
Wu Nae-Lih Wu
胡啟章
Chi-Chang Hu
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 238
中文關鍵詞: 分子內氫鍵聚合物刷高導電陽極人工SEI有機矽烷自組裝聯劑鋰離子電池
外文關鍵詞: Si, intramolecular hydrogen bonding, polymer brush, high conductive, anode, artificial SEI, Organosilane, Self-assembled, coupling agent, lithium-ion battery
相關次數: 點閱:523下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Currently, the lithium-ion battery (LIB) is one of the best choices for portable electronic devices and electric vehicles. The energy density of LIBs is only 200-300 Wh kg-1, which is limited by the electrode active materials' capacities. The existing graphite anode, which has low capacity of 372mAh g-1 in commercial LIBs, will need to be replaced in order to reach higher energy densities. Si-based anodes are promising for enhancing the energy density of LIBs because of their high capacity (>4000 mAh g-1), low operating voltages, low cost, and environmental friendliness. However, Si-anodes suffer from large volume expansion (300–400%), thick solid electrolyte interphase (SEI) layer, low conductivity and electrode swelling. For further practical application, it is vital to solve the above issues for improving the performance of Si anodes in LIB. This thesis aims to achieve the above goals by using different organic functionalizing materials to modify the surface of nano Si anode. Firstly, a polymer brush modified core-shell (PBCS) on the Si surface was developed by hydrosilylation reaction. The results indicate that the PBCS structure improves dispersion in slurry, provides mechanical protection during cycling, and enhances electrochemical performance due to intramolecular hydrogen bonding with it and the binder. The Si-PBCS electrode shows the ICE is 87.1%, the retentions are 92.5% (0.1C/ 0.1C) for 200 cycles and 86.2% (0.5C/ 0.5C) for 400 cycles, respectively. Generally, the PBCS structure significantly protects Si from cracking, inhibits gas evolution and non-crystalline formation for improved cycling performance Si anode without FEC additives or carbon coating. Secondly, in-situ polymerization using polymer brush acid and emeraldine base was used to develop a super electrically conductive (SEC) structure on the Si surface for improving the electrochemical stability of Si anode. The results revealed that compared with bare Si electrode, the Si-SEC electrode enhanced electrical conductivity by 104 times, reduced 75% of charge transfer resistance, prevented volume changes with high mechanical properties, and supported high diffusivity of the interfacial layer. The capacity of the Si-SEC electrode remained 1850 mAh g-1 with a 70% retention capacity at 300 cycles without requiring carbon/graphite composites and electrolyte additives. The SEC layer also provides an auto-switch which significantly increases the interfacial impedance to terminate current. Thirdly, an artificial SEI with self-assembled alkyl sulfonic acid (SAASA) structure reinforced is tailored onto the surface of Si through organosilane approach (obtained Si-SAASA anode). A coupling agent, 3-mercaptopropyl trimethoxysilane (MPTMS) was tailored onto the surface of Si producing strong siloxane (Si-O-Si) bond. The thiol group (-SH) in the MPTMS oxidized to sulfonic acid (-SO3H), resulting in a sulfonated artificial SEI reinforcement at the Si surface. With sulfonated MPTMS, the Si anode has been improved by forming -SO3Li, which enhances Li+ diffusion. The Si-SAASA electrode delivers a capacity of 1507.1 mAh g-1 at 0.5 C at 400 cycles with a retention capacity of 74.3%. TThe SAASA structures show good mechanical properties to suppress volume changes, shelters against parasitic reactions, prevent gas evolution, inhibit the formation of thick and high impedance SEI during lithiation/delithiation. A SAASA-based surface modification may extend the life of Si anodes, making the ultimate goal of developing practical LIB based on silicon potential. In conclusion, this thesis developed the need for surface modification of Nano Si to alleviate the causes of large volume change, low electronic conductivity, and instability of SEI layer, which are the key challenges for the performance of Si-based anodes. The study is expected to contribute to the development of a cost effective Si anode for higher-energy LIBs used in electric vehicles.

    中文摘要 i Abstract iii Acknowledgment v Table of contents vii List of Figures xii List of Tables xx List of Schemes xxi List of Abbreviations and Units xxii Chapter 1: Introduction 1 1.1. Background of the Study 1 1.2. Principle of lithium-ion batteries 3 1.2.1. Cathode material in LIB 4 1.2.2. Anode material in LIB 5 1.2.3. Electrolytes of LIB 7 1.2.4. Separators and current collectors of LIB 8 1.3. Performance Standards in Lithium-ion Batteries 9 Chapter 2: Literature Review 11 2.1. Silicon-Based Anode Materials 11 2.2. The Chemistry of Silicon Anode 12 2.3. Challenges of Silicon anode in lithium-ion Batteries 14 2.4. Strategies to Enhance Silicon anode for Lithium-ion Batteries 16 2.4.1. Nanostructured Silicon Anodes 16 2.4.2. Designing SiNP/C Composites 22 2.4.3. Designing Binders to Si anodes 24 2.4.4. Electrolyte additives 28 2.4.5. Artificial SEI through Surface Functionalization and Coating of Silicon 28 2.5. Surface Functionalization of Silicon Nanoparticles with Small Organic Molecule 35 2.6. Polymer Brush-Grafted Nanoparticles 37 2.7. Motivations and Objectives of the Study 40 2.7.1. Motivation 40 2.7.2. Objectives 42 2.8. Outline of the thesis 43 Chapter 3: Experimental Section and Characterization 45 3.1. Research Design 45 3.2. Chemicals and Reagents 46 3.3. Equipment and Instruments 47 3.4. Experimental Procedures 48 3.4.1. Synthesis of polymer brush core-shell structured Si 48 3.4.2. Synthesis of super-electrical-conductive Si (Si-SEC) 49 3.4.3. Synthesis of Self-assembly alkyl sulfonic acid structured Silicon (Si-SAASA) 50 3.5. Electrochemical Measurements 51 3.5.1. Electrode Preparation and Coin Cell Assembly 51 3.5.2. Galvanostatic Charge/Discharge Procedure 52 3.5.3. Cyclic Voltammetry (CV) 54 3.5.4. Electrochemical impedance spectroscopy (EIS) 55 3.6. Material Characterization techniques 57 3.6.1. Attenuated Total Reflection– Fourier Transform Infra-Red (ATR-FTIR) 57 3.6.2. Thermogravimetric Analysis 57 3.6.3. Conductivity Measurements 58 3.6.4. X-ray powder diffraction (XRD) 58 3.6.5. Differential Scanning Calorimetry Analysis (DSC) 60 3.6.6. BET Surface area and porosity Analysis 60 3.6.7. Scanning Electron Microscopy (SEM) 61 3.6.8. Transmission Electron Microscopy (TEM) 62 3.6.9. X-ray Photoelectron Spectroscopy (XPS) 63 3.6.10. Transmission X-ray microscopy (TXM) 64 3.6.11. Gas Chromatography-Mass Spectrometry (GC-MS) 65 Chapter Four: Investigations of Intramolecular Hydrogen Bonding Effect of a Polymer Brush Modified Silicon in Lithium-Ion Batteries 67 4.1. Introduction 67 4.2. Results and Discussion 69 4.2.1. Material characterization of the prepared powder samples 69 4.2.2. Electrochemical Characterization 73 4.2.3. Electrochemical Impedance Spectroscopy Analysis 81 4.2.4. Effect of PBCS on the electrochemical Properties of Commercial SiOx 84 4.2.5. Morphological Analysis 86 4.2.6. Operando TXM, XRD, and GC-MS Analysis 90 4.2.7. X-ray photoelectron spectroscopy (XPS) Analysis 95 4.2.8. Ex Situ ATR-FTIR Analysis 98 4.3. Summary 100 Chapter 5: The Development of Super Electrically Conductive Si Material with a Polymer Brush Acid and Emeraldine Base and its Auto-Switch Design for High-Safety and High-Performance Lithium-Ion Battery 101 5.1. Introduction 101 5.2. Results and Discussion 104 5.2.1. Material Characterization of the Prepared Powder Samples 104 5.2.2. Electrochemical Characterization 114 5.2.3. Electrochemical Impedance Spectroscopy Analysis 123 5.2.4. Morphological Analysis 125 5.2.5. Operando TXM, and XRD Analysis 127 5.2.6. X-ray photoelectron spectroscopy (XPS) Analysis 129 5.2.7. EIS Analysis of Si-SEC electrode for auto-switch operation 133 5.2.8. Full cell (Si-SEC-20 /LNMO) Electrochemical performance 135 5.3. Summary 136 Chapter 6: Tailoring of a Reinforcing and Artificial Self-Assembled Alkyl Sulfonic Acid Layer Electrolyte Interphase on Silicon as Anode for High-Energy-Density Lithium-Ion Batteries 137 6.1. Introduction 137 6.2. Results and Discussions 139 6.2.1. Material Characterization of the Prepared Powder Samples 139 6.2.2. Electrochemical Characterization 146 6.2.3. Electrochemical Impedance Spectroscopy Analysis 153 6.2.4. Morphological Analysis 155 6.2.5. Operando TXM, and GC-MS Analysis 159 6.2.6. X-ray photoelectron spectroscopy (XPS) Analysis 162 6.3. Summary 166 Chapter 7: Conclusions and Future outlooks 167 7.1. Conclusion 167 7.2. Future outlooks 169 References 171 Appendices 202 A. Supporting data for Approach-I (Chapter 4) 202 B. Supporting data for Approach-II (Chapter 5) 203 C. Supporting data for Approach-I (Chapter 6) 207 List of research papers 209 Conference presentations 210

    [1] F. Krausmann, A. Schaffartzik, A. Mayer, N. Eisenmenger, S. Gingrich, H. Haberl, M. Fischer-Kowalski, Long-term trends in global material and energy use, Social Ecology, Springer2016, pp. 199-216.
    [2] S. Weitemeyer, D. Kleinhans, T. Vogt, C. Agert, Integration of Renewable Energy Sources in future power systems: The role of storage, Renewable Energy, 75 (2015) 14-20.
    [3] M. Armand, P. Axmann, D. Bresser, M. Copley, K. Edström, C. Ekberg, D. Guyomard, B. Lestriez, P. Novák, M. Petranikova, Lithium-ion batteries–Current state of the art and anticipated developments, Journal of Power Sources, 479 (2020) 228708.
    [4] D. Deng, Li‐ion batteries: basics, progress, and challenges, Energy Science and Engineering, 3 (2015) 385-418.
    [5] M. Ge, X. Fang, J. Rong, C. Zhou, Review of porous silicon preparation and its application for lithium-ion battery anodes, Nanotechnology, 24 (2013) 422001.
    [6] P. Ruetschi, Energy storage and the environment: the role of battery technology, Journal of power sources, 42 (1993) 1-7.
    [7] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific 2011, pp. 171-179.
    [8] J. Xu, S. Dou, H. Liu, L. Dai, Cathode materials for next generation lithium ion batteries, Nano Energy, 2 (2013) 439-442.
    [9] J.-K. Park, Principles and applications of lithium secondary batteries, John Wiley & Sons2012.
    [10] M.S. Whittingham, Lithium batteries and cathode materials, Chemical reviews, 104 (2004) 4271-4302.
    [11] P. Guan, L. Zhou, Z. Yu, Y. Sun, Y. Liu, F. Wu, Y. Jiang, D. Chu, Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries, Journal of Energy Chemistry 43 (2020) 220-235.
    [12] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, Journal of Power Sources, 257 (2014) 421-443.
    [13] J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries, Electrochemical Energy Reviews, 1 (2018) 35-53.
    [14] Y. Pan, S. Gao, F. Sun, H. Yang, P.F. Cao, Polymer Binders Constructed through Dynamic Noncovalent Bonds for High-Capacity Silicon-Based Anodes, Chem. Eur. J., 25 (2019) 10976-10994.
    [15] J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater., 22 (2010) 587-603.
    [16] K. Hayashi, Y. Nemoto, S.-i. Tobishima, J.-i. Yamaki, Mixed solvent electrolyte for high voltage lithium metal secondary cells, Electrochimica Acta, 44 (1999) 2337-2344.
    [17] Z. Xu, J. Yang, H. Li, Y. Nuli, J. Wang, Electrolytes for advanced lithium ion batteries using silicon-based anodes, J. Mater. Chem. A, 7 (2019) 9432-9446.
    [18] A.M. Haregewoin, A.S. Wotango, B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy & Environmental Science, 9 (2016) 1955-1988.
    [19] R. Younesi, G.M. Veith, P. Johansson, K. Edström, T. Vegge, Lithium salts for advanced lithium batteries: Li–metal, Li–O 2, and Li–S, Energy Environ. Sci., 8 (2015) 1905-1922.
    [20] J. Kalhoff, G.G. Eshetu, D. Bresser, S. Passerini, Safer electrolytes for lithium‐ion batteries: state of the art and perspectives, ChemSusChem, 8 (2015) 2154-2175.
    [21] C.F. Francis, I.L. Kyratzis, A. Best, Lithium‐ion battery separators for ionic‐liquid electrolytes: a review, Adv.Mater., 32 (2020) 1904205.
    [22] H. Zhang, M.-Y. Zhou, C.-E. Lin, B.-K. Zhu, Progress in polymeric separators for lithium ion batteries, RSC Adv., 5 (2015) 89848-89860.
    [23] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy and Environmental Science, 7 (2014) 3857-3886.
    [24] P. Zhu, D. Gastol, J. Marshall, R. Sommerville, V. Goodship, E. Kendrick, A review of current collectors for lithium-ion batteries, Journal of Power Sources, 485 (2021) 229321.
    [25] H. Chang, Y.-R. Wu, X. Han, T.-F. Yi, Recent progress of advanced anode materials of lithium-ion batteries, Energy Mater., 1 (2021) 100003.
    [26] J.-Y. Li, Q. Xu, G. Li, Y.-X. Yin, L.-J. Wan, Y.-G. Guo, Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries, Materials Chemistry Frontiers, 1 (2017) 1691-1708.
    [27] A. Franco Gonzalez, N.-H. Yang, R.-S. Liu, Silicon Anode Design for Lithium-Ion Batteries: Progress and Perspectives, The Journal of Physical Chemistry C, 121 (2017) 27775-27787.
    [28] R.Z.A. Manj, F. Zhang, W.U. Rehman, W. Luo, J. Yang, Toward Understanding the Interaction within Silicon-based Anodes for Stable Lithium Storage, Chemical Engineering Journal, (2019) 123821.
    [29] K.A. Hays, B. Key, J. Li, D.L. Wood, G.M. Veith, Si Oxidation and H2 Gassing During Aqueous Slurry Preparation for Li-Ion Battery Anodes, J. Phys. Chem. C 122 (2018) 9746-9754.
    [30] C.J. Wen, R.A. Huggins, Chemical diffusion in intermediate phases in the lithium-silicon system, Journal of solid state chemistry, 37 (1981) 271-278.
    [31] H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 7 (2012) 414-429.
    [32] Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery, Advanced Energy Materials, 7 (2017) 1700715.
    [33] M.T. McDowell, S.W. Lee, W.D. Nix, Y. Cui, 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries, Adv Mater, 25 (2013) 4966-4985.
    [34] J. Li, J. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si, Journal of The Electrochemical Society, 154 (2007) A156.
    [35] M. Obrovac, L. Krause, Reversible cycling of crystalline silicon powder, Journal of the Electrochemical Society, 154 (2006) A103.
    [36] X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, J.Y. Huang, Size-Dependent Fracture of Silicon Nanoparticles During Lithiation, ACS Nano, 6 (2012) 1522-1531.
    [37] Z. Zeng, N. Liu, Q. Zeng, S.W. Lee, W.L. Mao, Y. Cui, In situ measurement of lithiation-induced stress in silicon nanoparticles using micro-Raman spectroscopy, Nano Energy, 22 (2016) 105-110.
    [38] X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Silicon based lithium-ion battery anodes: A chronicle perspective review, Nano Energy, 31 (2017) 113-143.
    [39] F. Wang, G. Chen, N. Zhang, X. Liu, R. Ma, Engineering of carbon and other protective coating layers for stabilizing silicon anode materials, Carbon Energy., 1 (2019) 219-245.
    [40] J.W.A. Choi, Doron Promise and reality of post-lithium-ion batteries with high energy densities, Nature Reviews Materials, 1 (2016) 1-16.
    [41] B.D. Assresahegn, D. Belanger, Effects of the Formulations of Silicon-Based Composite Anodes on their Mechanical, Storage, and Electrochemical Properties, ChemSusChem, 10 (2017) 4080-4089.
    [42] S. Jiang, B. Hu, R. Sahore, L. Zhang, H. Liu, L. Zhang, W. Lu, B. Zhao, Z. Zhang, Surface-Functionalized Silicon Nanoparticles as Anode Material for Lithium-Ion Battery, ACS Appl. Mater. Interfaces 10 (2018) 44924-44931.
    [43] Y. Oumellal, N. Delpuech, D. Mazouzi, N. Dupre, J. Gaubicher, P. Moreau, P. Soudan, B. Lestriez, D. Guyomard, The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries, Journal of Materials Chemistry, 21 (2011) 6201-6208.
    [44] C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors, K. Edström, T. Gustafsson, Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive, Chemistry of Materials, 27 (2015) 2591-2599.
    [45] K. Van Havenbergh, S. Turner, K. Driesen, J.-S. Bridel, G. Van Tendeloo, Solid-Electrolyte Interphase Evolution of Carbon-Coated Silicon Nanoparticles for Lithium-Ion Batteries Monitored by Transmission Electron Microscopy and Impedance Spectroscopy, Energy Technology, 3 (2015) 699-708.
    [46] H. Shobukawa, J. Shin, J. Alvarado, C.S. Rustomji, Y.S. Meng, Electrochemical reaction and surface chemistry for performance enhancement of a Si composite anode using a bis (fluorosulfonyl) imide-based ionic liquid, Journal of Materials Chemistry A, 4 (2016) 15117-15125.
    [47] J. Li, J.-Y. Yang, J.-T. Wang, S.-G. Lu, A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries, Rare Met., 38 (2019) 199-205.
    [48] T.D. Bogart, D. Oka, X. Lu, M. Gu, C. Wang, B.A. Korgel, Lithium ion battery peformance of silicon nanowires with carbon skin, ACS Nano, 8 (2014) 915-922.
    [49] Z. Wen, G. Lu, S. Mao, H. Kim, S. Cui, K. Yu, X. Huang, P.T. Hurley, O. Mao, J. Chen, Silicon nanotube anode for lithium-ion batteries, Electrochemistry Communications, 29 (2013) 67-70.
    [50] Y. Yao, M.T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W.D. Nix, Y. Cui, Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life, Nano Lett., 11 (2011) 2949-2954.
    [51] J. Wang, W. Huang, Y.S. Kim, Y.K. Jeong, S.C. Kim, J. Heo, H.K. Lee, B. Liu, J. Nah, Y. Cui, Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries, Nano Research, 13 (2020) 1558-1563.
    [52] B. Zhu, Y. Jin, Y. Tan, L. Zong, Y. Hu, L. Chen, Y. Chen, Q. Zhang, J. Zhu, Scalable production of Si nanoparticles directly from low grade sources for lithium-ion battery anode, Nano letters, 15 (2015) 5750-5754.
    [53] N. Lin, Y. Han, J. Zhou, K. Zhang, T. Xu, Y. Zhu, Y. Qian, A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries, Energy Environ. Sci. , 8 (2015) 3187-3191.
    [54] S. Jing, H. Jiang, Y. Hu, C. Li, Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries, Nanoscale, 6 (2014) 14441-14445.
    [55] C. Shen, R. Fu, H. Guo, Y. Wu, C. Fan, Y. Xia, Z. Liu, Compounds, Scalable synthesis of Si nanowires interconnected SiOx anode for high performance lithium-ion batteries, Journal of Alloys and Compounds, 783 (2019) 128-135.
    [56] X.-W. Jiao, Y.-H. Tian, X.-J. Zhang, Hollow Si nanospheres with amorphous TiO2 layer used as anode for high-performance Li-ion battery, Applied Surface Science 566 (2021) 150682.
    [57] J.-I. Lee, S. Park, High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching, Nano Energy, 2 (2013) 146-152.
    [58] F. Wang, L. Sun, W. Zi, B. Zhao, H. Du, Solution synthesis of porous silicon particles as an anode material for lithium ion batteries, Chem. Eur.J., 25 (2019) 9071-9077.
    [59] T. Zhao, D. Zhu, W. Li, A. Li, J. Zhang, Novel design and synthesis of carbon-coated porous silicon particles as high-performance lithium-ion battery anodes, Journal of Power Sources, 439 (2019) 227027.
    [60] Z. Lu, B. Li, D. Yang, H. Lv, M. Xue, C. Zhang, A self-assembled silicon/phenolic resin-based carbon core–shell nanocomposite as an anode material for lithium-ion batteries, RSC Adv., 8 (2018) 3477-3482.
    [61] T. Shen, X.-h. Xia, D. Xie, Z.-j. Yao, Y. Zhong, J.-y. Zhan, D.-h. Wang, J.-b. Wu, X.-l. Wang, J.-p. Tu, Encapsulating silicon nanoparticles into mesoporous carbon forming pomegranate-structured microspheres as a high-performance anode for lithium ion batteries, J. Mater. Chem. A, 5 (2017) 11197-11203.
    [62] D. Wang, C. Zhou, B. Cao, Y. Xu, D. Zhang, A. Li, J. Zhou, Z. Ma, X. Chen, H. Song, One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries, Energy Storage Materials, 24 (2020) 312-318.
    [63] Y. Shi, X. Zhou, G. Yu, Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries, Acc. Chem. Res. , 50 (2017) 2642-2652.
    [64] J. Li, L. Christensen, M. Obrovac, K. Hewitt, J. Dahn, Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder, Journal of the electrochemical Society, 155 (2008) A234-A238.
    [65] I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, A major constituent of brown algae for use in high-capacity Li-ion batteries, Science, 334 (2011) 75-79.
    [66] X. Zhao, V.P. Lehto, Challenges and prospects of nanosized silicon anodes in lithium-ion batteries, Nanotechnology, 32 (2021) 042002.
    [67] Z. Karkar, D. Guyomard, L. Roué, B. Lestriez, A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes, Electrochimica Acta, 258 (2017) 453-466.
    [68] R. Guo, S. Zhang, H. Ying, W. Yang, J. Wang, W. Han, Preparation of an Amorphous Cross‐Linked Binder for Silicon Anodes, ChemSusChem, 12 (2019) 4838-4845.
    [69] P. Li, G. Chen, Y. Lin, F. Chen, L. Chen, N. Zhang, Y. Cao, R. Ma, X. Liu, 3D Network Binder via In Situ Cross‐Linking on Silicon Anodes with Improved Stability for Lithium‐Ion Batteries, Macromolecular Chemistry and Physics, 221 (2019).
    [70] S. Chen, H.Y. Ling, H. Chen, S. Zhang, A. Du, C. Yan, Development of cross-linked dextrin as aqueous binders for silicon based anodes, Journal of Power Sources, 450 (2020).
    [71] S. Chen, H.Y. Ling, H. Chen, S. Zhang, A. Du, C. Yan, Development of cross-linked dextrin as aqueous binders for silicon based anodes, Journal of Power Sources, 450 (2020) 227671.
    [72] X. Wang, Y. Zhang, Y. Shi, X. Zeng, R. Tang, L. Wei, Conducting polyaniline/poly (acrylic acid)/phytic acid multifunctional binders for Si anodes in lithium ion batteries, Ionics, (2019) 1-9.
    [73] M. Zheng, C. Wang, Y. Xu, K. Li, D. Liu, A water-soluble binary conductive binder for Si anode lithium ion battery, Electrochimica Acta, 305 (2019) 555-562.
    [74] H. Mi, X. Yang, F. Li, X. Zhuang, C. Chen, Y. Li, P. Zhang, Self-healing silicon-sodium alginate-polyaniline composites originated from the enhancement hydrogen bonding for lithium-ion battery: A combined simulation and experiment study, Journal of Power Sources, 412 (2019) 749-758.
    [75] I.A. Profatilova, C. Stock, A. Schmitz, S. Passerini, M. Winter, Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate, Journal of Power Sources, 222 (2013) 140-149.
    [76] D.A. Dalla Corte, A.C. Gouget-Laemmel, K. Lahlil, G. Caillon, C. Jordy, J.-N. Chazalviel, T. Gacoin, M. Rosso, F. Ozanam, Molecular grafting on silicon anodes: artificial Solid-Electrolyte Interphase and surface stabilization, Electrochimica Acta, 201 (2016) 70-77.
    [77] S.-W. Song, S.-W. Baek, Silane-derived SEI stabilization on thin-film electrodes of nanocrystalline Si for lithium batteries, Electrochemical and Solid-State Letters, 12 (2009) A23-A27.
    [78] C. Li, T. Shi, D. Li, H. Yoshitake, H. Wang, Effect of surface modification on electrochemical performance of nano-sized Si as an anode material for Li-ion batteries, RSC Advances, 6 (2016) 34715-34723.
    [79] Y. Gao, R. Yi, Y.C. Li, J. Song, S. Chen, Q. Huang, T.E. Mallouk, D. Wang, General Method of Manipulating Formation, Composition, and Morphology of Solid-Electrolyte Interphases for Stable Li-Alloy Anodes, J Am Chem Soc, 139 (2017) 17359-17367.
    [80] B.H. Shen, G.M. Veith, W.E. Tenhaeff, Silicon Surface Tethered Polymer as Artificial Solid Electrolyte Interface, Scientific reports, 8 (2018) 11549.
    [81] S. Jiang, B. Hu, R. Sahore, H. Liu, G.F. Pach, G.M. Carroll, L. Zhang, B. Zhao, N.R. Neale, Z. Zhang, Tailoring the Surface of Silicon Nanoparticles for Enhanced Chemical and Electrochemical Stability for Li-Ion Batteries, ACS Applied Energy Materials, (2019).
    [82] J. Liu, X. Sun, Elegant design of electrode and electrode/electrolyte interface in lithium-ion batteries by atomic layer deposition, Nanotechnology, 26 (2014) 024001.
    [83] W. Luo, X. Chen, Y. Xia, M. Chen, L. Wang, Q. Wang, W. Li, J. Yang, Surface and interface engineering of silicon‐based anode materials for lithium‐ion batteries, Adv. Energy Mater., 7 (2017) 1701083.
    [84] T. Tan, P.-K. Lee, N. Zettsu, K. Teshima, Y. Denis, Highly stable lithium-ion battery anode with polyimide coating anchored onto micron-size silicon monoxide via self-assembled monolayer, Journal of Power Sources, 453 (2020) 227874.
    [85] R. Na, K. Minnici, G. Zhang, N. Lu, M.A. Gonzalez, G. Wang, E. Reichmanis, Electrically Conductive Shell-Protective Layer Capping on the Silicon Surface as the Anode Material for High-Performance Lithium-Ion Batteries, ACS Appl Mater Interfaces, 11 (2019) 40034-40042.
    [86] M. Tian, P. Wu, Nature Plant Polyphenol Coating Silicon Sub-microparticle Conjugated with Polyacrylic Acid for Achieving a High-performance Anode of Lithium-ion Battery, ACS Appl. Energy Mater., (2019).
    [87] Q. Ma, H. Xie, J. Qu, Z. Zhao, B. Zhang, Q. Song, P. Xing, H. Yin, Tailoring the Polymer-Derived Carbon Encapsulated Silicon Nanoparticles for High-Performance Lithium-Ion Battery Anodes, ACS Appl. Energy Mater., 3 (2019) 268-278.
    [88] Q. Ma, H. Xie, J. Qu, Z. Zhao, B. Zhang, Q. Song, P. Xing, H. Yin, Tailoring the polymer-derived carbon encapsulated silicon nanoparticles for high-performance Lithium-ion battery anodes, ACS Appl. Energy Mater., (2019).
    [89] L. Hu, B. Luo, C. Wu, P. Hu, L. Wang, H. Zhang, Yolk-shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes, Journal of Energy Chemistry, 32 (2019) 124-130.
    [90] A.A. Leonardi, M.J.L. Faro, A. Irrera, Biosensing platforms based on silicon nanostructures: A critical review, Analytica Chimica Acta 1160 (2021) 338393.
    [91] T. Vo-Dinh, Nanotechnology in biology and medicine: methods, devices, and applications, CRC Press 2007.
    [92] S.P. Pujari, L. Scheres, A.T. Marcelis, H. Zuilhof, Covalent surface modification of oxide surfaces, Angew. Chem. Int. Ed., 53 (2014) 6322-6356.
    [93] J. Veerbeek, J. Huskens, Applications of Monolayer‐Functionalized H‐Terminated Silicon Surfaces: A Review, Small Methods, 1 (2017) 1700072.
    [94] M.R. Linford, P. Fenter, P.M. Eisenberger, C.E. Chidsey, Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon, Journal of the American Chemical Society, 117 (1995) 3145-3155.
    [95] Y. Wang, S. Hu, W. Brittain, Polymer brush grafted from an allylsilane-functionalized surface, Macromolecules, 39 (2006) 5675-5678.
    [96] C. Bao, J.M. Horton, Z. Bai, D. Li, T.P. Lodge, B. Zhao, Stimuli‐triggered phase transfer of polymer‐inorganic hybrid hairy particles between two immiscible liquid phases, J Polym Sci B, 52 (2014) 1600-1619.
    [97] B.V. Tawade, I.E. Apata, N. Pradhan, A. Karim, D. Raghavan, Recent Advances in the Synthesis of Polymer-Grafted Low-K and High-K Nanoparticles for Dielectric and Electronic Applications, Molecules, 26 (2021) 2942.
    [98] J.M. Giussi, M.L. Cortez, W.A. Marmisollé, O. Azzaroni, Practical use of polymer brushes in sustainable energy applications: interfacial nanoarchitectonics for high-efficiency devices, Chem. Soc. Rev., 48 (2019) 814-849.
    [99] S. Ma, X. Zhang, B. Yu, F. Zhou, Brushing up functional materials, Ma et al. NPG Asia Materials, 11 (2019) 1-39.
    [100] W. Choi, H.-C. Shin, J.M. Kim, J.-Y. Choi, W.-S. Yoon, Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries, Journal of Electrochemical Science Technology, 11 (2020) 1-13.
    [101] J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C.E. Lyman, E. Lifshin, L. Sawyer, J.R. Michael, The SEM and Its Modes of Operation, Scanning Electron Microscopy and X-ray Microanalysis: Third Edition, Springer US, Boston, MA, 2003, pp. 21-60.
    [102] A. Mane, V. Patil, X-ray photoelectron spectroscopy of nanofillers and their polymer nanocomposites, Spectroscopy of Polymer Nanocomposites, Elsevier 2016, pp. 452-467.
    [103] L. Li, Y.-c.K. Chen-Wiegart, J. Wang, P. Gao, Q. Ding, Y.-S. Yu, F. Wang, J. Cabana, J. Wang, S. Jin, Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging, Nature communications, 6 (2015) 1-8.
    [104] J. Meckling, J. Nahm, The politics of technology bans: Industrial policy competition and green goals for the auto industry, Energy Policy, 126 (2019) 470-479.
    [105] S.A. Sulaiman, Energy Efficiency in Mobility Systems, Springer 2020.
    [106] M. Coren, Nine countries say they’ll ban internal combustion engines. So far, it’s just words. Quartz, 7 August 2018, 2018.
    [107] K. Jermsittiparsert, T. Chankoson, Behavior of Tourism Industry under the Situation of Environmental Threats and Carbon Emission: Time Series Analysis from Thailand, International Journal of Energy Economics and Policy, 9 (2019) 366-372.
    [108] Y.-F. Xing, Y.-H. Xu, M.-H. Shi, Y.-X. Lian, The impact of PM2. 5 on the human respiratory system, Journal of thoracic disease, 8 (2016) E69.
    [109] S. Karuppiah, C. Keller, P. Kumar, P.-H. Jouneau, D. Aldakov, J.-B. Ducros, G. Lapertot, P. Chenevier, C. Haon, A Scalable Silicon Nanowires-Grown-On-Graphite Composite for High-Energy Lithium Batteries, ACS nano, 14 (2020) 12006-12015.
    [110] R. Shao, F. Zhu, Z. Cao, Z. Zhang, M. Dou, J. Niu, B. Zhu, F. Wang, Heteroatom-doped carbon networks enabling robust and flexible silicon anodes for high energy Li-ion batteries, Journal of Materials Chemistry A, 8 (2020) 18338-18347.
    [111] L.M. Housel, W. Li, C.D. Quilty, M.N. Vila, L. Wang, C.R. Tang, D.C. Bock, Q. Wu, X. Tong, A.R. Head, K.J. Takeuchi, A.C. Marschilok, E.S. Takeuchi, Insights into reactivity of silicon negative electrodes: analysis using isothermal microcalorimetry, ACS applied materials & interfaces, 11 (2019) 37567-37577.
    [112] K. Ogata, D.-S. Ko, C. Jung, J.-H. Lee, S. Sul, H.-G. Kim, J. Seo, J. Jang, M. Koh, K. Kim, J.H. Kim, I.-S. Jung, M.S. Park, K. Takei, S. Saito, S. Wakita, K. Ito, Y. Kubo, K. Uosaki, S. Doo, S. Han, J.K. Shin, S. Jeon, Spontaneous pseudo-topological silicon quantization for redesigned Si-based Li-ion batteries, Nano energy, 56 (2019) 875-883.
    [113] J. Wang, X. Wang, B. Liu, H. Lu, G. Chu, J. Liu, Y.-G. Guo, X. Yu, F. Luo, Y. Ren, L. Chen, H. Li, Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode, Nano Energy, 78 (2020) 105101.
    [114] L.C. Loaiza, L. Monconduit, V. Seznec, Si and Ge‐Based Anode Materials for Li‐, Na‐, and K‐Ion Batteries: A Perspective from Structure to Electrochemical Mechanism, Small, 16 (2020) 1905260.
    [115] M.H. Parekh, A.D. Sediako, A. Naseri, M.J. Thomson, V.G. Pol, In Situ Mechanistic Elucidation of Superior Si‐C‐Graphite Li‐Ion Battery Anode Formation with Thermal Safety Aspects, Advanced Energy Materials, 10 (2020) 1902799.
    [116] Y. Zeng, Y. Huang, N. Liu, X. Wang, Y. Zhang, Y. Guo, H.-H. Wu, H. Chen, X. Tang, Q. Zhang, N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries, Journal of Energy Chemistry, 54 (2021) 727-735.
    [117] T. Azib, N. Bibent, M. Latroche, F. Fischer, J.-C. Jumas, J. Olivier-Fourcade, C. Jordy, P.-E. Lippens, F. Cuevas, Ni–Sn intermetallics as an efficient buffering matrix of Si anodes in Li-ion batteries, Journal of Materials Chemistry A, 8 (2020) 18132-18142.
    [118] Q. Zhang, C. Zhang, W. Luo, L. Cui, Y.J. Wang, T. Jian, X. Li, Q. Yan, H. Liu, C. Ouyang, Y. Chen, C.-L. Chen, J. Zhang, Sequence‐Defined Peptoids with -OH and -COOH Groups As Binders to Reduce Cracks of Si Nanoparticles of Lithium‐Ion Batteries, Advanced Science, 7 (2020) 2000749.
    [119] I.S. Aminu, H. Geaney, S. Imtiaz, T.E. Adegoke, N. Kapuria, G.A. Collins, K.M. Ryan, A Copper Silicide Nanofoam Current Collector for Directly Grown Si Nanowire Networks and their Application as Lithium‐Ion Anodes, Advanced Functional Materials, 30 (2020) 2003278.
    [120] B. Anothumakkool, F. Holtstiege, S. Wiemers-Meyer, S. Nowak, F. Schappacher, M. Winter, Electropolymerization Triggered in Situ Surface Modification of Electrode Interphases: Alleviating First-Cycle Lithium Loss in Silicon Anode Lithium-Ion Batteries, ACS Sustainable Chemistry & Engineering, 8 (2020) 12788-12798.
    [121] Y. Gao, R. Yi, Y.C. Li, J. Song, S. Chen, Q. Huang, T.E. Mallouk, D. Wang, General method of manipulating formation, composition, and morphology of solid-electrolyte interphases for stable Li-alloy anodes, Journal of the American Chemical Society, 139 (2017) 17359-17367.
    [122] T. Alemu, S.A. Pradanawati, S.-C. Chang, P.-L. Lin, Y.-L. Kuo, Q.-T. Pham, C.-H. Su, F.-M. Wang, In operando measurements of kinetics of solid electrolyte interphase formation in lithium-ion batteries, Journal of Power Sources, 400 (2018) 426-433.
    [123] J. Cardoso, A. Mayrén, I. Romero-Ibarra, D. Nava, J. Vazquez-Arenas, Nanocomposite polymer electrolytes based on poly (poly (ethylene glycol) methacrylate), MMT or ZSM-5 formulated with LiTFSI and PYR 11 TFSI for Li-ion batteries, RSC advances, 6 (2016) 7249-7259.
    [124] F.-M. Wang, C.-C. Hu, S.-C. Lo, Y.-Y. Wang, C.-C. Wan, Definition of ionic transfer mechanisms based on positron annihilation studies in lithium batteries, Journal of Electroanalytical Chemistry, 644 (2010) 25-29.
    [125] P. Thissen, T. Peixoto, R.C. Longo, W. Peng, W.G. Schmidt, K. Cho, Y.J. Chabal, Activation of surface hydroxyl groups by modification of H-terminated Si(111) surfaces, J Am Chem Soc, 134 (2012) 8869-8874.
    [126] V. Dugas, Y. Chevalier, Chemical Reactions in Dense Monolayers: In Situ Thermal Cleavage of Grafted Esters for Preparation of Solid Surfaces Functionalized with Carboxylic Acids, Langmuir, 27 (2011) 14188-14200.
    [127] T.-E. Kim, K.-E. Khishigbayar, K.Y. Cho, Effect of heating rate on the properties of silicon carbide fiber with chemical-vapor-cured polycarbosilane fiber, Journal of Advanced Ceramics, 6 (2017) 59-66.
    [128] T. Hatchard, J. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc., 151 (2004) A838-A842
    [129] J. Li, J. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si, J. Electrochem. Soc., 154 (2007) A156-A161.
    [130] L. Yang, H. Li, J. Liu, Z. Sun, S. Tang, M. Lei, Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries, Scientific reports, 5 (2015) 10908.
    [131] M. Ratyński, B. Hamankiewicz, M. Krajewski, M. Boczar, A. Czerwiński, The effect of compressive stresses on a silicon electrode’s cycle life in a Li-ion battery, RSC Adv., 8 (2018) 22546-22551.
    [132] M. Obrovac, L. Krause, Reversible cycling of crystalline silicon powder, J. Electrochem. Soc., 154 (2006) A103-A108.
    [133] Y. Gao, R. Yi, Y.C. Li, J. Song, S. Chen, Q. Huang, T.E. Mallouk, D. Wang, General method of manipulating formation, composition, and morphology of solid-electrolyte interphases for stable Li-alloy anodes, J. Am. Chem. Soc., 139 (2017) 17359-17367.
    [134] H. Wu, G. Yu, L. Pan, N. Liu, M.T. McDowell, Z. Bao, Y. Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nat. Commun., 4 (2013) 1-6.
    [135] C. Sun, Y. Deng, L. Wan, X. Qin, G. Chen, Graphene oxide-immobilized NH(2)-terminated silicon nanoparticles by cross-linked interactions for highly stable silicon negative electrodes, ACS Appl Mater Interfaces, 6 (2014) 11277-11285.
    [136] C.-C. Wu, C.-C. Li, Distribution Uniformity of Water-Based Binders in Si Anodes and the Distribution Effects on Cell Performance, ACS Sustainable Chem. Eng. , 8 (2020) 6868-6876.
    [137] Y. Cai, Y. Li, B. Jin, A. Ali, M. Ling, D. Cheng, J. Lu, Y. Hou, Q. He, X. Zhan, F. Chen, Q. Zhang, Dual cross-linked fluorinated binder network for high-performance silicon and silicon oxide based anodes in lithium-ion batteries, ACS Appl. Mater. Interfaces, 11 (2019) 46800-46807.
    [138] F.-M. Wang, J. Rick, Synergy of Nyquist and Bode electrochemical impedance spectroscopy studies to commercial type lithium ion batteries, Solid State Ionics, 268 (2014) 31-34.
    [139] Y. Wang, Z. Zhang, L. Zhang, Z. Luo, J. Shen, H. Lin, J. Long, J.C. Wu, X. Fu, X. Wang, C. Li, Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@ 2D-MoS2 heterostructure, J. Am. Chem. Soc., 140 (2018) 14595-14598.
    [140] W. Wang, R. Snoeckx, X. Zhang, M.S. Cha, A. Bogaerts, Modeling plasma-based CO2 and CH4 conversion in mixtures with N2, O2, and H2O: the bigger plasma chemistry picture, J. Phys. Chem. C, 122 (2018) 8704-8723.
    [141] R. Bywalez, H. Karacuban, H. Nienhaus, C. Schulz, H. Wiggers, Stabilization of mid-sized silicon nanoparticles by functionalization with acrylic acid, Nanoscale Res. Lett., 7 (2012) 1-7.
    [142] B. Sivaranjini, R. Mangaiyarkarasi, V. Ganesh, S. Umadevi, Vertical alignment of liquid crystals over a functionalized flexible substrate, Scientific reports, 8 (2018) 1-13.
    [143] Y. Yu, C.M. Hessel, T.D. Bogart, M.G. Panthani, M.R. Rasch, B.A. Korgel, Room temperature hydrosilylation of silicon nanocrystals with bifunctional terminal alkenes, Langmuir, 29 (2013) 1533-1540.
    [144] C.K. Chan, R. Ruffo, S.S. Hong, Y. Cui, Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes, Journal of Power Sources, 189 (2009) 1132-1140.
    [145] S.P. Pujari, A.D. Filippov, S. Gangarapu, H. Zuilhof, High-Density Modification of H-Terminated Si (111) Surfaces Using Short-Chain Alkynes, Langmuir, 33 (2017) 14599-14607.
    [146] R. Bywalez, H. Karacuban, H. Nienhaus, C. Schulz, H. Wiggers, Stabilization of mid-sized silicon nanoparticles by functionalization with acrylic acid, Nanoscale research letters, 7 (2012) 76.
    [147] W. Xu, S.S.S. Vegunta, J.C. Flake, Surface-modified silicon nanowire anodes for lithium-ion batteries, Journal of Power Sources, 196 (2011) 8583-8589.
    [148] C.C. Nguyen, D.M. Seo, K. Chandrasiri, B.L. Lucht, Improved Cycling Performance of a Si Nanoparticle Anode Utilizing Citric Acid as a Surface-Modifying Agent, Langmuir, 33 (2016) 9254-9261.
    [149] T. Jaumann, J. Balach, M. Klose, S. Oswald, U. Langklotz, A. Michaelis, J. Eckert, L. Giebeler, SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: the role of electrode preparation, FEC addition and binders, Physical Chemistry Chemical Physics, 17 (2015) 24956-24967.
    [150] M.S. Tahir, M. Weinberger, P. Balasubramanian, T. Diemant, R.J. Behm, M. Lindén, M. Wohlfahrt-Mehrens, Silicon carboxylate derived silicon oxycarbides as anodes for lithium ion batteries, J. Mater. Chem. A,, 5 (2017) 10190-10199.
    [151] F. Jeschull, F. Scott, S. Trabesinger, Interactions of silicon nanoparticles with carboxymethyl cellulose and carboxylic acids in negative electrodes of lithium-ion batteries, Journal of Power Sources, 431 (2019) 63-74.
    [152] D.J. Lee, M.-H. Ryou, J.-N. Lee, B.G. Kim, Y.M. Lee, H.-W. Kim, B.-S. Kong, J.-K. Park, J.W. Choi, Nitrogen-doped carbon coating for a high-performance SiO anode in lithium-ion batteries, Electrochem. Commun., 34 (2013) 98-101.
    [153] J.-H. Kim, H.-J. Sohn, H. Kim, G. Jeong, W. Choi, Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries, J. Power Sources, 170 (2007) 456-459.
    [154] B.A. Kahsay, F.-M. Wang, A.G. Hailu, X.-C. Wang, R.A. Yuwono, C.-H. Su, Synthesis, characteristics, and electrochemical performance of N, N-(p-phenylene) bismaleamate and its fluorosubstitution compound on organic anode materials in lithium-ion batteries, Electrochem. Acta, 365 (2021) 137342.
    [155] B. Atsbeha Kahsay, F.-M. Wang, A.G. Hailu, C.-H. Su, Maleamic acid as an organic anode material in lithium-ion batteries, Polymers, 12 (2020) 1109.
    [156] M. Xia, Y. Li, Z. Zhou, Y. Wu, N. Zhou, H. Zhang, X. Xiong, Improving the electrochemical properties of SiO@ C anode for high-energy lithium ion battery by adding graphite through fluidization thermal chemical vapor deposition method, Ceram. Int., 45 (2019) 1950-1959.
    [157] M. Nie, D.P. Abraham, Y. Chen, A. Bose, B.L. Lucht, Silicon Solid Electrolyte Interphase (SEI) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy, The Journal of Physical Chemistry C, 117 (2013) 13403-13412.
    [158] C.P. Grey, D.S. Hall, Prospects for lithium-ion batteries and beyond—a 2030 vision, Nat. commun., 11 (2020) 1-4.
    [159] F. Duffner, N. Kronemeyer, J. Tübke, J. Leker, M. Winter, R. Schmuch, Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure, Nature Energy, 6 (2021) 123-134.
    [160] G.G. Eshetu, H. Zhang, X. Judez, H. Adenusi, M. Armand, S. Passerini, E. Figgemeier, Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes, Nat. commun., 12 (2021) 1-14.
    [161] X. Zhang, D. Wang, X. Qiu, Y. Ma, D. Kong, K. Müllen, X. Li, L. Zhi, Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation, Nat. commun., 11 (2020) 1-9.
    [162] A. Stoddart, Lithium-ion batteries: Stress relief for silicon, Nat. Rev. Mater., 2 (2017) 17057.
    [163] H. Li, T. Yamaguchi, S. Matsumoto, H. Hoshikawa, T. Kumagai, N.L. Okamoto, T. Ichitsubo, Circumventing huge volume strain in alloy anodes of lithium batteries, Nat. commun., 11 (2020) 1-8.
    [164] S. Suh, H. Choi, K. Eom, H.-J. Kim, Compounds, Enhancing the electrochemical properties of a Si anode by introducing cobalt metal as a conductive buffer for lithium-ion batteries, Journal of Alloys and Compounds, 827 (2020) 154102.
    [165] W. An, B. Gao, S. Mei, B. Xiang, J. Fu, L. Wang, Q. Zhang, P.K. Chu, K. Huo, Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes, Nat. commun., 10 (2019) 1-11.
    [166] H.F. Andersen, C.E.L. Foss, J. Voje, R. Tronstad, T. Mokkelbost, P.E. Vullum, A. Ulvestad, M. Kirkengen, J.P. Mæhlen, Silicon-carbon composite anodes from industrial battery grade silicon, Sci. Rep. , 9 (2019) 1-9.
    [167] Z. Zhang, X. Han, L. Li, P. Su, W. Huang, J. Wang, J. Xu, C. Li, S. Chen, Y. Yang, Tailoring the interfaces of silicon/carbon nanotube for high rate lithium-ion battery anodes, Journal of Power Sources 450 (2020) 227593.
    [168] M. Cui, L. Wang, X. Guo, E. Wang, Y. Yang, T. Wu, D. He, S. Liu, H. Yu, Designing of hierarchical mesoporous/macroporous silicon-based composite anode material for low-cost high-performance lithium-ion batteries, J. Mater. Chem. A, 7 (2019) 3874-3881.
    [169] A. Jamaluddin, B. Umesh, F. Chen, J.-K. Chang, C.-Y. Su, Facile synthesis of core–shell structured Si@ graphene balls as a high-performance anode for lithium-ion batteries, Nanoscale, 12 (2020) 9616-9627.
    [170] S.-W. Park, H.-W. Shim, J.-C. Kim, D.-W. Kim, Uniform Si nanoparticle-embedded nitrogen-doped carbon nanofiber electrodes for lithium ion batteries, Journal of Alloys and Compounds, 728 (2017) 490-496.
    [171] R. Larter, Surface-modified silicon improves lithium-ion battery performance, Surf. Sci. Spectra 27 (2020) 016801
    [172] F. Wu, H. Wang, J. Shi, Z. Yan, S. Song, B. Peng, X. Zhang, Y. Xiang, Surface modification of silicon nanoparticles by an “ink” layer for advanced lithium ion batteries, ACS Appl. Mater. Interfaces, 10 (2018) 19639-19648.
    [173] J. Rao, N. Liu, L. Li, J. Su, F. Long, Z. Zou, Y. Gao, A high performance wire-shaped flexible lithium-ion battery based on silicon nanoparticles within polypyrrole/twisted carbon fibers, RSC Adv., 7 (2017) 26601-26607.
    [174] Q. Wang, R. Li, X. Zhou, J. Li, Z. Lei, Polythiophene-coated nano-silicon composite anodes with enhanced performance for lithium-ion batteries, J Solid State Electrochem, 20 (2016) 1331-1336.
    [175] H.-Y. Lin, C.-H. Li, D.-Y. Wang, C.-C. Chen, Chemical doping of a core–shell silicon nanoparticles@ polyaniline nanocomposite for the performance enhancement of a lithium ion battery anode, Nanoscale, 8 (2016) 1280-1287.
    [176] Y. Shi, G. Liu, R. Jin, H. Xu, Q. Wang, S. Gao, Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: a review, Carbon Energy, 1 (2019) 253-275.
    [177] H. Wu, G. Yu, L. Pan, N. Liu, M.T. McDowell, Z. Bao, Y. Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nat. commun., 4 (2013) 1943.
    [178] L. Xiao, Y.H. Sehlleier, S. Dobrowolny, F. Mahlendorf, A. Heinzel, C. Schulz, H. Wiggers, Novel Si-CNT/polyaniline nanocomposites as lithium-ion battery anodes for improved cycling performance, Materials Today: Proceedings 4(2017) S263-S268.
    [179] M.L. Para, D. Versaci, J. Amici, M.F. Caballero, M.V. Cozzarin, C. Francia, S. Bodoardo, M. Gamba, Synthesis and characterization of montmorillonite/polyaniline composites and its usage to modify a commercial separator, Journal of Electroanalytical Chemistry, 880 (2021) 114876.
    [180] Y. Luo, R. Guo, T. Li, F. Li, Z. Liu, M. Zheng, B. Wang, Z. Yang, H. Luo, Y. Wan, Applications of polyaniline for Li-ion batteries, Li-sulfur batteries and supercapacitors, ChemSusChem, 12 (2019) 1591-1611.
    [181] J. Zhou, L. Zhou, L. Yang, T. Chen, J. Li, H. Pan, Y. Yang, Z. Wang, Carbon free silicon/polyaniline hybrid anodes with 3D conductive structures for superior lithium-ion batteries, Chem Commun (Camb), 56 (2020) 2328-2331.
    [182] H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, interfaces, Effect of graphene oxide on the properties of its composite with polyaniline, ACS Appl. Mater. Interfaces, 2 (2010) 821-828.
    [183] S.M. Hammo, Effect of Acidic Dopants properties on the Electrical Conductivity of Poly aniline.pdf, Tikrit Journal of Pure Science, 17 (2012) 1813.
    [184] J. Tu, L. Hu, W. Wang, J. Hou, H. Zhu, S. Jiao, In-Situ Synthesis of Silicon/Polyaniline Core/Shell and Its Electrochemical Performance for Lithium-Ion Batteries, Journal of The Electrochemical Society, 160 (2013) A1916-A1921.
    [185] I.A. Stenina, R.R. Shaydullin, T.L. Kulova, A.M. Skundin, A.B. Yaroslavtsev, Influence of carbon coating and PANI modification on the electrochemical performance of Li4Ti5O12, Ionics, 25 (2019) 2077-2085.
    [186] J. Tu, L. Hu, W. Wang, J. Hou, H. Zhu, S. Jiao, In-situ synthesis of silicon/polyaniline core/shell and its electrochemical performance for lithium-ion batteries, Journal of The Electrochemical Society, 160 (2013) A1916.
    [187] S.N. Alam, N. Sharma, L. Kumar, Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO)*, Graphene, 06 (2017) 1-18.
    [188] C. Zhang, Q. Chen, X. Ai, X. Li, Q. Xie, Y. Cheng, H. Kong, W. Xu, L. Wang, M.-S. Wang, Conductive polyaniline doped with phytic acid as a binder and conductive additive for a commercial silicon anode with enhanced lithium storage properties, J. Mater. Chem. A, 8 (2020) 16323-16331.
    [189] G. Capilli, D.R. Sartori, M.C. Gonzalez, E. Laurenti, C. Minero, P. Calza, Non-purified commercial multiwalled carbon nanotubes supported on electrospun polyacrylonitrile@ polypyrrole nanofibers as photocatalysts for water decontamination, RSC Adv., 11 (2021) 9911-9920.
    [190] X. Wan, T. Mu, B. Shen, Q. Meng, G. Lu, S. Lou, P. Zuo, Y. Ma, C. Du, G. Yin, Stable Silicon Anodes Realized by Multifunctional Dynamic Cross-linking Structure with Self-healing Chemistry and Enhanced Ionic Conductivity for Lithium-ion Batteries, Nano Energy, (2022) 107334.
    [191] Y. Chen, A review of polyaniline based materials as anodes for lithiumion batteries, IOP Conf. Series: Materials Science and Engineering, IOP Publishing, 2019, pp. 022115.
    [192] Y. Wang, Preparation and application of polyaniline nanofibers: an overview, Polym Int 67 (2018) 650-669.
    [193] C. Toigo, C. Arbizzani, K.-H. Pettinger, M. Biso, Study on different water-based binders for Li4Ti5O12 electrodes, Molecules, 25 (2020) 2443.
    [194] J. Nam, E. Kim, K. Rajeev, Y. Kim, T.-H. Kim, A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries, Scientific Reports, 10 (2020) 1-12.
    [195] X. Gu, W. Tian, X. Tian, Y. Ding, X. Jia, L. Wang, Y. Qin, Improving Cycling Performance of Si-Based Lithium Ion Batteries Anode with Se-Loaded Carbon Coating, ACS Applied Energy Materials, 2 (2019) 5124-5132.
    [196] X. Huang, D. Cen, R. Wei, H. Fan, Z. Bao, Synthesis of porous Si/C composite nanosheets from vermiculite with a hierarchical structure as a high-performance anode for lithium-ion battery, ACS Appl. Mater. Interfaces 11 (2019) 26854-26862.
    [197] S. Zhao, Y. Xu, X. Xian, N. Liu, W. Li, Fabrication of Porous Si@C Composites with Core-Shell Structure and Their Electrochemical Performance for Li-ion Batteries, Batteries, 5 (2019).
    [198] S. Tardif, E. Pavlenko, L. Quazuguel, M. Boniface, M. Maréchal, J.-S. Micha, L. Gonon, V. Mareau, G. Gebel, P. Bayle-Guillemaud, R. François, L. Sandrine, Operando Raman spectroscopy and synchrotron X-ray diffraction of lithiation/delithiation in silicon nanoparticle anodes, ACS Nano, 11 (2017) 11306-11316.
    [199] S. Golczak, A. Kanciurzewska, M. Fahlman, K. Langer, J.J. Langer, Comparative XPS surface study of polyaniline thin films, Solid State Ionics, 179 (2008) 2234-2239.
    [200] W. Wu, Z. Lin, H.-Y. Shi, L. Lin, X. Yang, Y. Song, X.-X. Liu, X. Sun, Realizing the leucoemeraldine-emeraldine-pernigraniline redox reactions in polyaniline cathode materials for aqueous zinc-polymer batteries, Chemical Engineering Journal, 427 (2022).
    [201] F.-M. Wang, D.-T. Shieh, J.-H. Cheng, C.-R. Yang, An investigation of the salt dissociation effects on solid electrolyte interface (SEI) formation using linear carbonate-based electrolytes in lithium ion batteries, Solid State Ionics, 180 (2010) 1660-1666.
    [202] Y. Yan, Z. Xu, C. Liu, H. Dou, J. Wei, X. Zhao, J. Ma, Q. Dong, H. Xu, Y.-s. He, Z.-F. Ma, X. Yang, Rational Design of the Robust Janus Shell on Silicon Anodes for High-Performance Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, (2019).
    [203] Z. Deng, X. Lin, Z. Huang, J. Meng, Y. Zhong, G. Ma, Y. Zhou, Y. Shen, H. Ding, Y. Huang, Recent Progress on Advanced Imaging Techniques for Lithium‐Ion Batteries, Adv. Energy Mater., 11 (2021) 2000806.
    [204] K. Sun, Z. Peng, Intermetallic interphases in lithium metal and lithium ion batteries, InfoMat, 3 (2021) 1083-1109.
    [205] N. Harpak, G. Davidi, F. Patolsky, Breathing parylene-based nanothin artificial SEI for highly-stable long life three-dimensional silicon lithium-ion batteries, Chemical Engineering Journal, 429 (2022) 132077.
    [206] G. Zhu, D. Chao, W. Xu, M. Wu, H. Zhang, Microscale Silicon-Based Anodes: Fundamental Understanding and Industrial Prospects for Practical High-Energy Lithium-Ion Batteries, ACS Nano, 15 (2021) 15567-15593.
    [207] M.A. Rahman, G. Song, A.I. Bhatt, Y.C. Wong, C. Wen, Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries, Adv. Funct. Mater., 26 (2016) 647-678.
    [208] F. Zhang, G. Zhu, K. Wang, X. Qian, Y. Zhao, W. Luo, J. Yang, Boosting the initial coulombic efficiency in silicon anodes through interfacial incorporation of metal nanocrystals, J. Mater. Chem. A, 7 (2019) 17426-17434.
    [209] C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nature nanotechnology, 3 (2008) 31.
    [210] F. Dou, L. Shi, G. Chen, D. Zhang, Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries, Electrochemical Energy Reviews, 2 (2019) 149-198.
    [211] N. Liu, J. Liu, D. Jia, Y. Huang, J. Luo, X. Mamat, Y. Yu, Y. Dong, G. Hu, Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries, Energy Storage Materials, 18 (2019) 165-173.
    [212] W. Li, X. Guo, Y. Lu, L. Wang, A. Fan, M. Sui, H. Yu, Amorphous nanosized silicon with hierarchically porous structure for high-performance lithium ion batteries, Energy Storage Materials, 7 (2017) 203-208.
    [213] J.-S. Bridel, T. Azais, M. Morcrette, J.-M. Tarascon, D. Larcher, Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries, Chem. Mater., 22 (2009) 1229-1241.
    [214] A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C.F. Huebner, T.F. Fuller, I. Luzinov, G. Yushin, Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid, ACS Appl. Mater. Interfaces 2(2010) 3004-3010.
    [215] S. Huang, J. Ren, R. Liu, M. Yue, Y. Huang, G. Yuan, The progress of novel binder as a non-ignorable part to improve the performance of Si-based anodes for Li-ion batteries, Int J Energy Res., 42 (2018) 919-935.
    [216] J. Shin, T.-H. Kim, Y. Lee, E. Cho, Key functional groups defining the formation of Si anode solid-electrolyte interphase towards high energy density Li-ion batteries, Energy Storage Materials, 25 (2020) 764-781.
    [217] T. Kennedy, M. Brandon, F. Laffir, K.M. Ryan, Understanding the influence of electrolyte additives on the electrochemical performance and morphology evolution of silicon nanowire based lithium-ion battery anodes, Journal of Power Sources, 359 (2017) 601-610.
    [218] G. Zhu, S. Yang, Y. Wang, Q. Qu, H. Zheng, Dimethylacrylamide, a novel electrolyte additive, can improve the electrochemical performances of silicon anodes in lithium-ion batteries, RSC Adv., 9 (2019) 435-443.
    [219] K. Xu, X. Liu, K. Guan, Y. Yu, W. Lei, S. Zhang, Q. Jia, H. Zhang, Research Progress on Coating Structure of Silicon Anode Materials for Lithium‐Ion Batteries, ChemSusChem, 14 (2021) 5135-5160.
    [220] M. Sadeghipari, A. Mashayekhi, S. Mohajerzadeh, Novel approach for improving the performance of Si-based anodes in lithium-ion batteries, Nanotechnology, 29 (2018) 055403.
    [221] G. Qin, X. Wu, J. Wen, J. Li, M. Zeng, A Core‐Shell NiFe2O4@ SiO2 Structure as a High‐Performance Anode Material for Lithium‐Ion Batteries, ChemElectroChem, 6 (2019) 911-916.
    [222] A.G. Hailu, F.-M. Wang, N.-L. Wu, N.-H. Yeh, C.-C. Hsu, Y.-J. Chang, P.-W.L. Tiong, R.A. Yuwono, C. Khotimah, C.-C. Wang, a.A. Ramar, Investigations of intramolecular hydrogen bonding effect of a polymer brush modified silicon in lithium-ion batteries, Adv. Mater. Interfaces, In press (2022).
    [223] M.-A. Chen, X.-B. Lu, Z.-H. Guo, R. Huang, Influence of hydrolysis time on the structure and corrosion protective performance of (3-mercaptopropyl) triethoxysilane film on copper, Corrosion science, 53 (2011) 2793-2802.
    [224] Z. Wen, W. Fang, L. Chen, Z. Guo, N. Zhang, X. Liu, G. Chen, Anticorrosive Copper Current Collector Passivated by Self‐Assembled Porous Membrane for Highly Stable Lithium Metal Batteries, Adv. Funct. Mater., 31 (2021) 2104930.
    [225] M.M. Aboelhassan, A.F. Peixoto, C. Freire, Sulfonic acid functionalized silica nanoparticles as catalysts for the esterification of linoleic acid, NewJ. Chem., 41 (2017) 3595-3605.
    [226] J. Wu, L. Ling, J. Xie, G. Ma, B. Wang, Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane: Experimental and theoretical study on the surface interaction, Chemical Physics Letters, 591 (2014) 227-232.
    [227] L. Peña, K.L. Hohn, J. Li, X.S. Sun, D. Wang, Synthesis of Propyl-Sulfonic Acid-Functionalized Nanoparticles as Catalysts for Cellobiose Hydrolysis, Journal of Biomaterials and Nanobiotechnology, 05 (2014) 241-253.
    [228] L. Zhu, F. Du, Y. Zhuang, H. Dai, H. Cao, J. Adkins, Q. Zhou, J. Zheng, Effect of crosslinking binders on Li-storage behavior of silicon particles as anodes for lithium ion batteries, Journal of Electroanalytical Chemistry, 845 (2019) 22-30.
    [229] M. Tian, P. Wu, Nature Plant Polyphenol Coating Silicon Submicroparticle Conjugated with Polyacrylic Acid for Achieving a High-Performance Anode of Lithium-Ion Battery, ACS Applied Energy Materials, 2 (2019) 5066-5073.
    [230] T. Mu, S. Lou, N.G. Holmes, C. Wang, M. He, B. Shen, X. Lin, P. Zuo, Y. Ma, R. Li, C. Du, J. Wang, G. Yin, X. Sun, Reversible Silicon Anodes with Long Cycles by Multifunctional Volumetric Buffer Layers, ACS Appl Mater Interfaces, 13 (2021) 4093-4101.
    [231] S.-H. Baek, Y.-M. Jeong, S. Chul Shin, B. Joon Choi, J. Hwan Han, Tunable solid electrolyte interphase formation on SiO anodes using SnO artificial layers for Lithium-ion batteries, Applied Surface Science, 549 (2021).
    [232] A. Schiele, B. Breitung, T. Hatsukade, B.z.B. Berkes, P. Hartmann, J.r. Janek, T. Brezesinski, The critical role of fluoroethylene carbonate in the gassing of silicon anodes for lithium-ion batteries, ACS Energy Lett., 2 (2017) 2228-2233.
    [233] R. Bernhard, M. Metzger, H.A. Gasteiger, Gas evolution at graphite anodes depending on electrolyte water content and SEI quality studied by on-line electrochemical mass spectrometry, Journal ofThe Electrochemical Society, 162 (2015) A1984.
    [234] C.C. Nguyen, D.M. Seo, K. Chandrasiri, B.L. Lucht, Improved cycling performance of a Si nanoparticle anode utilizing citric acid as a surface-modifying agent, Langmuir, 33 (2017) 9254-9261.
    [235] K.T. Sarang, X. Li, A. Miranda, T. Terlier, E.-S. Oh, R. Verduzco, J.L. Lutkenhaus, Tannic Acid as a Small-Molecule Binder for Silicon Anodes, ACS Appl. Energy Mater., 3 (2020) 6985-6994.
    [236] P. Li, G. Chen, N. Zhang, R. Ma, X. Liu, β‐cyclodextrin as Lithium‐ion Diffusion Channel with Enhanced Kinetics for Stable Silicon Anode, Energy Environ. Mater. , 4 (2020) 72-80.
    [237] G. Xu, X. Wang, J. Li, X. Shangguan, S. Huang, D. Lu, B. Chen, J. Ma, S. Dong, X. Zhou, Tracing the Impact of Hybrid Functional Additives on a High-Voltage (5 V-class) SiOx-C/LiNi0.5Mn1.5O4 Li-Ion Battery System, Chem. Mater., 30 (2018) 8291-8302.
    [238] X. Zuo, X. Deng, X. Ma, J. Wu, H. Liang, J. Nan, 3-(Phenylsulfonyl) propionitrile as a higher voltage bifunctional electrolyte additive to improve the performance of lithium-ion batteries, J. Mater. Chem. A,, 6 (2018) 14725-14733.
    [239] S. Jiang, Z. Yang, Y. Liu, N. Johnson, I. Bloom, L. Zhang, Z. Zhang, Engineering the Si Anode Interface via Particle Surface Modification: Embedded Organic Carbonates Lead to Enhanced Performance, ACS Appl. Energy Mater. , 4 (2021) 8193-8200.
    [240] C.C. Nguyen, B.L. Lucht, Comparative study of fluoroethylene carbonate and vinylene carbonate for silicon anodes in lithium ion batteries, Journal of the Electrochemical Society, 161 (2014) A1933.
    [241] Y.B. Yohannes, S.D. Lin, N.-L. Wu, In Situ DRIFTS Analysis of Solid Electrolyte Interphase of Si-Based Anode with and without Fluoroethylene Carbonate Additive, Journal of The Electrochemical Society, 164 (2017) A3641-A3648.
    [242] B.H. Shen, S. Wang, W.E. Tenhaeff, Ultrathin conformal polycyclosiloxane films to improve silicon cycling stability, Sci Adv, 5 (2019) eaaw4856.

    QR CODE