簡易檢索 / 詳目顯示

研究生: 楊豐銘
Feng-Ming Yang
論文名稱: 無線多媒體網路資源分配策略服務品質保證之研究
The Study of Resource Allocation Policy to Guarantee QoS in Wireless Multimedia Networks
指導教授: 陳維美
Wei-Mei Chen
口試委員: 陳金蓮
Jean-Lien C. Wu
呂政修
Jenq-Shiou Leu
陳俊良
Jiann-Liang Chen
陳省隆
Hsing-Lung Chen
周立德
Li-Der Chou
李漢銘
Hahn-Ming Lee
謝孫源
Sun-Yuan Hsieh
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 110
中文關鍵詞: 服務品質全球互通微波存取封包排程頻寬分配頻寬需求訊息電能節省睡眠模式
外文關鍵詞: BW-REQ, Energy Ef
相關次數: 點閱:349下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

存在於無線傳輸上的頻寬有限,如何提升支援多使用者的系統流通量與服務品質為重要之議題。存在於無線傳輸上的頻寬有限,如何提升支援多使用者的系統流通量為重要之議題。儘管有許多頻寬請求的設計概念,用來提高系統之流通量,本研究考量頻寬請求以及封包排程的對應關係。
本論文在全球互通微波存取系統下,提出兩階段的排序機制,利用使用者選擇較佳的通道狀況,對應其基地台所提供之調變,來提升系統的流通量與降低延遲時間,以確保對用戶的服務品質。模擬結果顯示,在適當的頻寬需求訊息之選用下,我們提出的方案其系統流通量測勝過規格中先前提出的方案。儘管有許多跨層級的設計概念來提升系統的流通量,但鮮少有研究可同時考量服務品質以及公平性。本論文亦提出跨階層子載波排序機制,選擇較佳的子載波來傳送資料。
除此之外,在全球互通微波存取系統網路中,電源的管理是另一最具挑戰的問題。為了節省電能,行動台被准許進入睡眠模式或活動模式。本論文考慮於多播廣播服務的應用環境之下,提出節能排程機制,同時滿足即時連線的服務品質之要求。


Because the bandwidth usage of broadband wireless access networks is limited, a crucial goal in this field is to improve the system throughput and provisioning of QoS by supporting multiple users based on limited bandwidth resources. Although several studies were conducted on adaptive bandwidth allocation designs for bandwidth requests, previous research on both packet scheduling and bandwidth allocation based on channel quality are relatively limited.
This study proposes a two-stage mechanism, called PSBA, to process the operations of packet scheduling and bandwidth allocation based on channel quality information. The proposed approach is adaptive for dynamic channel conditions to improve system throughput and to reduce packet delay in mobile WiMAX. The experimental results revealed that the throughput of PSBA is 21 % higher than that of the IEEE 802.16e standard model by using the bandwidth request message (BW-REQ). Although there are several studies on cross-layer designs for improving system throughput, previous research on Quality of Service guarantee and fairness are relatively rare. This study also proposes a Cross-Layer Subcarrier Permutation (CLSP) mechanism that uses cross-layer strategies to select suboptimal subcarriers.
In addition, Mobile WiMAX networks usually provide flexible sleep-mode operations that allow mobile stations (MSs) to conserve energy during sleep or active mode. This study proposes an energy-efficient packet scheduling algorithm for both multicast and broadcast services that does not violate the quality of service (QoS) requirements of real-time connections.

論 文 摘 要 I ABSTRACT II 誌 謝 III TABLE OF CONTENTS IV LIST OF FIGURES VI LIST OF TABLES VIII Chapter 1 Introduction 1 Chapter 2 Overview of wireless multimedia networks 4 2.1 WiMAX System offers 4 2.2 Traffic Class 5 2.3 Subcarrier Permutation 6 2.4 Channel Sounding 8 2.5 Bandwidth Allocation and Request Mechanism 10 2.5.1 Channel Quality Information Channel 12 2.5.2 Bandwidth Request Message 15 Chapter 3 QoS Guarantee and fairness in wireless multimedia networks 19 3.1 Subcarrier Establishment with PUSC 19 3.2 Cross Layer Subcarrier Permutation Scheme 21 3.2.1 MAC Allocation 22 3.2.2 Analysis 24 3.2.3 Subcarrier Allocation 26 3.2.4 Physical Layer Allocation 27 3.3 Simulation 29 3.3.1 Experiment Environment 29 3.3.2 Experiment Results 33 Chapter 4 Dynamic Strategy for Packet Scheduling and Bandwidth Allocation 40 4.1 Queueing Model for Traffic Class 40 4.2 Packet Scheduling and Bandwidth Allocation Mechanism 45 4.2.1 Numerical Example 46 4.2.2 Packet Scheduling 48 4.2.3 Bandwidth Allocation 53 4.3 Simulation 55 4.3.1 Experiment Environment 55 4.3.2 Experiment Results 59 Chapter 5 Activity Aggregation Selection Mechanism for Power Consumption 65 5.1 Sleep mode in IEEE 802.16m system 65 5.1.1 Sleep Cycle Operation 70 5.1.2 Significant Features of IEEE 802.16m 71 5.1.3 Aperiodic On-off Scheme 73 5.2 Activity Aggregation Selection Mechanism 75 5.2.1 Structures and Notations 75 5.2.2 Traffic Indication 79 5.2.3 Activity Aggregation Selection Algorithm 81 5.2.4 Analysis 86 5.3 Simulation 87 Chapter 6 Summary and Future Work 98 6.1 Summary 98 6.2 Future Work 100 References 101 Publication List 108 Biography 110

[1]. Koffman I, Roman V. Broadband Wireless Access Solutions Based on OFDM Access in IEEE 802.16. IEEE Communications Magazine 2002; 40(4):96–103.
[2]. IEEE standard for Local and Metropolitan Area Networks — Part 16: Air Interface for Fixed Broadband Wireless Access Systems. IEEE 802.16e–2005, February. 2006.
[3]. Ghosh A, Wolter DR, Andrews JG, Chen R. Broadband Wireless Access with WiMAX/802.16: Current Performance Benchmarks and Future Potential. IEEE Communications Magazine 2005; 43(2):129–136.
[4]. Kwon T, Lee H, Choi S, Kim J, Cho D, Cho S, Yun S, Park W, Kim K. Design and Implementation of a Simulator Based on a Cross-Layer Protocol between MAC and PHY Layers in a WiBro Compatible IEEE 802.16e OFDMA System. IEEE Communications Magazine 2005; 43(12):136–146.
[5]. Aissa S, Aniba G. Queuing Models for Dimensioning Interactive and Streaming Services in High-Speed Downlink Packet Access Networks. IEEE Transactions on Broadcasting 2007; 53(3):619–627.
[6]. Chen J, Tan W. Predictive Dynamic Channel Allocation Scheme for Improving Power Saving and Mobility in BWA Networks. ACM/Springer Mobile Networks and Applications 2007; 12(1):15–30.
[7]. Zhang YJ, Letaief KB. Multiuser adaptive subcarrier-and-bit allocation with adaptive cell selection for OFDM systems. IEEE Transactions on Communications 2004; 3(5):1566–1575.
[8]. IEEE standard for Local and Metropolitan Area Networks — Part 16: Air Interface for Fixed Broadband Wireless Access Systems. IEEE 802.16e–2005, February. 2006.
[9]. Ghosh A, Wolter DR, Andrews JG, Chen R. Broadband Wireless Access with WiMAX/802.16: Current Performance Benchmarks and Future Potential. IEEE Communications Magazine 2005; 43(2):129–136.
[10]. Fallah YP, Agharebparast F, Minhas M, Alnuweiri H, Leung VCM. Analytical modeling of contention-based bandwidth request mechanism in IEEE 802.16 wireless networks. IEEE Transactions on Vehicular Technology 2008; 57(5): 3094–3107.
[11]. He J, Guild K, Yang K, Chen HH. Modeling contention based bandwidth request scheme for IEEE 802.16 networks. IEEE Communications Letters 2007; 11(8): 689–700
[12]. Cicconetti C, Lenzini L, Mingozzi E, Eklund C. Quality of Service Support in IEEE 802.16 Networks. IEEE/ACM Transactions on Networking 2006; 20(2):50–55.
[13]. Stiakogiannakis IN, Kaklamani DI. IEEE802.16e — WiMAX: Performance analysis of Partial and Full Usage of Sub-channels under fractional frequency reuse. Proceedings of Wireless Technology Conference (EuWIT 2009), 28-29 September 2009; 41–44.
[14]. Zwick T, Beukema TJ, Nam H. Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel. IEEE Transactions on Vehicular Technology 2005; 54(4):1266–1277.
[15]. Kivinen J. 60-GHz wideband radio channel sounder. IEEE Transactions on Instrumentation and Measurement 2007; 56(5):1831–1838.
[16]. Siamarou AG, Al-Nuaimi M. A Wideband Frequency-Domain Channel-Sounding System and Delay-Spread Measurements at the License-Free 57- to 64-GHz Band. IEEE Transactions on Instrumentation and Measurement 2010; 59(3):519–526.
[17]. Choi JM, Lee H, Chung HK, Lee JH. Sounding Method for Proportional Fair Scheduling in OFDMA/FDD Uplink. IEEE 65rd Vehicular Technology Conference, 22–25 April 2007; 2732–2735.
[18]. Vook FW, Zhuang X, Baum KL, Thomas TA, Cudak MC. Signaling Methodologies to Support Closed-Loop Transmit Processing in TDD-OFDMA. IEEE C802.16e-04/103r2, July 2004.
[19]. Qiang N, Vinel A, Yang X, Turlikov A, Tao J. Investigation of Bandwidth Request Mechanisms under Point-to-Multipoint Mode of WiMAX Networks. IEEE Communications Magazine 2007; 45(5): 132-138.
[20]. Ma M, Lu J, Fu CP. Hierarchical scheduling framework for QoS service in WiMAX point-to-multi-point networks. IET Communications 2010; 4(9): 1073-1082.
[21]. Niyato D, Hossain E. Queue-aware uplink bandwidth allocation and rate control for polling service in IEEE 802.16 broadband wireless networks. IEEE Transactions on Mobile Computing 2006; 5(6): 668–679.
[22]. Sheu TL, Huang KC Adaptive bandwidth allocation model for multiple traffic classes in IEEE 802.16 worldwide interoperability for microwave access networks IET Communications 2011; 5(1): 90-98.
[23]. Kwon T, Lee H, Choi S, Kim J, Cho D, Cho S, Yun S, Park W, Kim K. Design and Implementation of a Simulator Based on a Cross-Layer Protocol between MAC and PHY Layers in a WiBro Compatible IEEE 802.16e OFDMA System. IEEE Communications Magazine 2005; 43(12):136–146.
[24]. Chen J, Tan W. Predictive Dynamic Channel Allocation Scheme for Improving Power Saving and Mobility in BWA Networks. ACM/Springer Mobile Networks and Applications 2007; 12(1):15–30.
[25]. Vook FW, Zhuang X, Baum KL, Thomas TA, Cudak MC. Signaling Methodologies to Support Closed-Loop Transmit Processing in TDD-OFDMA. IEEE C802.16e-04/103r2, July 2004.
[26]. Zwick T, Beukema TJ, Nam H. Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel. IEEE Transactions on Vehicular Technology 2005; 54(4):1266–1277.
[27]. Zhang YJ, Letaief KB. Multiuser adaptive subcarrier-and-bit allocation with adaptive cell selection for OFDM systems. IEEE Transactions on Communications 2004; 3(5):1566–1575.
[28]. Bchini T, Tabbane N, Tabbane S, Chaput E, Beylot, AL. QoS in IEEE 802.16e for VoIP and Video with Mechanism of Soft Handover – FBSS in Highway. The Eighth International Conference on Networks, 1-6 March 2009; 88–93.
[29]. Jeon SY, Cho DH. Channel adaptive CQI reporting schemes for HSDPA systems. IEEE Communications Letters 2006; 10(6):459-461.
[30]. Huang CY, Chung WC, Chang CJ, Ren FC. An Intelligent HARQ Scheme for HSDPA. IEEE Transactions on Vehicular Technology 2011; 60(4):1602-1611.
[31]. Stiakogiannakis IN, Kaklamani DI. IEEE802.16e — WiMAX: Performance analysis of Partial and Full Usage of Sub-channels under fractional frequency reuse. Proceedings of Wireless Technology Conference (EuWIT 2009), 28-29 September 2009; 41–44.
[32]. Sabry A, El-Badawy H, Shehata K, Ali A. A Novel Resource Allocation Technique for VBR Video Traffic in the Uplink over WiMAX Networks. International Conference on Information and Multimedia Technology, 16-18 December 2009; 442–448.
[33]. Yang FM, Cheng TK, Wu J-LC, Chen WM. The Study of QoS Guarantee and Fairness Based on Cross-Layer Subcarrier Permutation in WiMAX. The Fifth International Conference on Software Engineering Advances, 22-27 August 2010; 362–367.
[34]. Fattah H, Leung C. An Overview of Scheduling Algorithms in Wireless Multimedia Networks. IEEE Wireless Communications 2002; 9(5):76–83.
[35]. Liu CL, Layland J. Scheduling algorithms for multiprogramming in a hard real-time environment. Journal of the ACM 1973; 20:46–61.
[36]. Shreedhar M, Varghese G. Efficient Fair Queuing using Deficit Round Robin. IEEE/ACM Transactions on Networking 1996; 4(3):375–85.
[37]. Cicconetti C, Lenzini L, Mingozzi E, Eklund C. Quality of Service Support in IEEE 802.16 Networks. IEEE/ACM Transactions on Networking 2006; 20(2):50–55.
[38]. Gross D, Harris CM. Fundamentals of Queueing Theory (3nd edn). Wiley: New York, USA, 1998:116–130.
[39]. Kim YY, Li S. Capturing Important Statistics of a Fading/ Shadowing Channel for Network Performance Analysis. IEEE Journal on Selected Areas in Communications 1999; 17(5):888–901.
[40]. Senarath G, Tong W, Zhu P, Zhang H, Steer D, Yu D, Naden M, Kitchener D. Multi-hop Relay System Evaluation Methodology (Channel Model and Performance Metric). IEEE 802.16j-06/013r3, February 2007.
[41]. Lee H, Kwon T, Cho DH, Lim G, Chang Y. Performance Analysis of Scheduling Algorithms for VoIP Services in IEEE 802.16e Systems. IEEE 63rd Vehicular Technology Conference, vol. 3, 7-10 May 2006; 1231–1235.
[42]. Zhao D, Shen X. Performance of packet voice transmission using IEEE 802.16 protocol. IEEE Wireless Communications 2007, 14(1):44–51.
[43]. Kim BJ, Hwang GU. Performance Analysis of the ertPS Algorithm and Enhanced ertPS Algorithm for VoIP Services in IEEE 802.16e Systems. IEICE Transactions on Communication 2009; E92.B(6):2000–2007.
[44]. Jain R, Chiu DM, Hawe W. A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared System. DEC Research Report TR-301, 1984; 1–38.
[45]. Gross D, Harris CM. Fundamentals of Queueing Theory (3nd edn). Wiley: New York, USA, 1998:99–100.
[46]. Fattah H, Leung C. An Overview of Scheduling Algorithms in Wireless Multimedia Networks. IEEE Wireless Communications 2002; 9(5):76–83.
[47]. Liu CL, Layland J. Scheduling algorithms for multiprogramming in a hard real-time environment. Journal of the ACM 1973; 20:46–61.
[48]. Shreedhar M, Varghese G. Efficient Fair Queuing using Deficit Round Robin. IEEE/ACM Transactions on Networking 1996; 4(3):375–85.
[49]. OPNET WiMAX Model Development Consortium, OPNET Network Simulator with WiMAX Model, http://www.opnet.com/WiMAX, 2006.
[50]. Senarath G, Tong W, Zhu P, Zhang H, Steer D, Yu D, Naden M, Kitchener D. Multi-hop Relay System Evaluation Methodology (Channel Model and Performance Metric). IEEE 802.16j-06/013r3, February 2007.
[51]. Kim BJ, Hwang GU. Performance Analysis of the ertPS Algorithm and Enhanced ertPS Algorithm for VoIP Services in IEEE 802.16e Systems. IEICE Transactions on Communication 2009; E92.B(6):2000–2007.
[52]. Chakchai SI, Jain R, Tamimi AK. Scheduling in IEEE 802.16e mobile WiMAX networks: key issues and a survey. IEEE Journal on Selected Areas in Communications 2009; 27(2):156-171.
[53]. Jain R, Chiu DM, Hawe W. A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared System. DEC Research Report TR-301, 1984; 1–38.
[54]. Air Interface for Fixed Broadband Wireless Access Systems. IEEEStd 802.16 - 2004, October 2004.
[55]. Air Interface for Fixed and Mobile Broadband Wireless Access Systems. IEEE Std 802.16e, February 2006.
[56]. Sayenko A, Alanen O, Karhula J, Hamaainen T. Ensuring the QoS Requirements in 802.16 Scheduling. Proceedings of International Workshop Modeling Analysis and Simulation Wireless and Mobile Systems., Terromolinos, Spain, 2006;108-117.
[57]. Sayenko A, Alanen O, Karhula J, Hamaainen T. Scheduling solution for the IEEE 802.16 base station. Computer Networks, January 2008; 52(1): 96-115.
[58]. Cicconetti C, Lenzini L, place E. Mingozzi, Eklund C. Quality of service support in IEEE 802.16 networks. IEEE Network, April 2006; 20(2): 50-55.
[59]. Ruangchaijatupon N, Wang L, Ji Y. A study on the performance of scheduling schemes for broadband wireless access networks. Proceedings of the International Symposium on Communications and Information Technology, October 2006; 1008-1012.
[60]. Wang Y, Chan S, Zukerman M, Harris R.J. Priority-Based fair Scheduling for Multimedia WiMAX Uplink Traffic. Proceedings of IEEE International Conference Communications. Beijing, China, 2008; 301-305.
[61]. L. F. M. de Moraes, P. D. Jr. Maciel. Analysis and evaluation of a new MAC protocol for broadband wireless access. Proceedings of International. Conference Wireless Networks, Communications, and Mobile Computing. Kaanapali Beach Maui, Hawaii, 2005; 1: 107-112.
[62]. Lilei W, Huimin X. A new management strategy of service flow in IEEE 802.16 systems. Proceedings of IEEE International Conference Industrial Electronics and Applications., Harbin, China, 2008; 1716-1719.
[63]. Niyato D, Hossain E. Queue-aware uplink bandwidth allocation for polling services in 802.16 broadband wireless networks. Proceedings of IEEE International Global Telecommunications Conference. St. Louis, MO, 2005; 6; 5-9.
[64]. Chen J, Jiao W, Wang H. A service flow management strategy for IEEE 802.16 broadband wireless access systems in TDD mode. Proceedings of IEEE International Conference Communications. Seoul, Korea, 2005; 5: 3422-3426.
[65]. Chen J, Jiao W, Quo Q. An Integrated QoS Control Architecture for IEEE 802.16 Broadband Wireless Access Systems. Proceedings of Global Telecommunications Conference. St. Louis, MO, 2005; 6-11.
[66]. Chakchai So-In, Jain R, Tamimi A.-K. Scheduling in IEEE 802.16e mobile WiMAX networks: key issues and a survey. IEEE Journal on Selected Areas in Communications, February 2009; 27(2):156-171.
[67]. Kim MG, Choi JY, Kang M. Trade-off guidelines for power management mechanism in the IEEE 802.16e MAC. Computer Communications, June 2008; 31(10): 2063-2070.
[68]. Xiao Y. Energy saving mechanism in the IEEE 802.16e wireless MAN. IEEE Communications Letter, July 2005; 9 :595 – 597.
[69]. Han K, Choi S. Performance analysis of sleep mode operation in IEEE 802.16e mobile broadband wireless access systems. Proceedings of IEEE Vehicular Technology Conference (VTC-2006 Spring), 2006; 1141 –1145.
[70]. Park Y, Hwang GU. Performance modeling and analysis of the sleep -mode in ieee802.16e WMAN. Proceedings of IEEE Vehicular Technology Conference (VTC-2007 Spring), April 2007; 2801 – 2806.
[71]. Zhang Y. Performance modeling of energy management mechanism in IEEE 802.16e mobile WMAN. Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), March 2007; 3205 – 3209.
[72]. Xiao Y. Performance analysis of an energy saving mechanism in the IEEE 802.16e wireless MAN Proceedings of Consumer Communications and Networking Conference (CCNC), January 2006; 406 – 410.
[73]. Seo JB, Lee SQ, Park NH, Lee HW, Cho CH. Performance analysis of sleep mode operation in IEEE802.16e. Proceedings of IEEE Vehicular Technology Conference, September 2004; 2(26-29):1169-1173.
[74]. Jinglin S, Gengfa F, Yi S, Jihua Z, Zhongcheng L, Dutkiewicz, E. Improving Mobile Station Energy Efficiency in IEEE 802.16e WMAN by Burst Scheduling,” Proceedings of Global Telecommunications Conference, 2006; 1-5.
[75]. Tsao SL, Chen YL. Energy-efficient packet scheduling algorithms for real-time communications in a mobile WiMAX system. Computer Communications, June 2008; 31(10):2350-2359.
[76]. Tsao SL, Chen YL. Energy-Efficient Sleep-Mode Operations for Broadband Wireless Access Systems. Proceedings of Vehicular Technology Conference, September 2006; 1-5.
[77]. Sunggeun J, Munhwan C, Sunghyun C. Performance analysis of IEEE 802.16m sleep mode for heterogeneous traffic. IEEE Communications Letters, May 2010; 14(5):405-407.
[78]. Hwang E, Kim KJ, Son JJ, Choi BD. The Power-Saving Mechanism With Periodic Traffic Indications in the IEEE 802.16e/m. IEEE Transactions on Vehicular Technology, January 2010; 59(1): 319-334.
[79]. Hsu CH, Feng KT, Chang CJ. Statistical Control Approach for Sleep-Mode Operations in IEEE 802.16m Systems. IEEE Transactions on Vehicular Technology, November 2010; 59(9): 4453-4466.
[80]. Park Y, Leem H, Sung DK. Power Saving Mechanism in IEEE 802.16m. Proceedings of IEEE 71st Vehicular Technology Conference (VTC 2010-Spring), May 2010;1-5.
[81]. Tseng HL, Hsu YP, Hsu CH, Tseng PH, Feng KT. A Maximal Power-Conserving Scheduling Algorithm for Broadband Wireless Networks. Proceedings of International IEEE Wireless Communications and Networking Conference, March 2008; 1877-1882.
[82]. Baek S, Son JJ, Choi BD. Performance Analysis of Sleep Mode Operation for IEEE 802.16m Advanced WMAN. Proceedings of IEEE International Conference on Communications Workshops, June 2009; 1-4.
[83]. Kalle RK, Gupta M, Bergman A, Levy E, Mohanty S, Venkatachalam M, Das, D. Advanced Mechanisms for Sleep Mode Optimization of VoIP Traffic over IEEE 802.16m. Proceedings of 2010 IEEE Global Telecommunications Conference (GLOBECOM), December 2010; 1-6.
[84]. Anisimov A, Andreev S, Turlikov A. IEEE 802.16m energy-efficient sleep mode operation analysis with mean delay restriction. Proceedings of International Conference on Ultra Modern Telecommunications & Workshops (ICUMT '09), October 2009; 1-4.
[85]. Sleep mode for IEEE 802.16m. IEEE 802.16 Broadband Wireless Access Working Group, July 2008.
[86]. Clarification of Sleep Mode. IEEE 802.16 Broadband Wireless Access Working Group, January 2011.
[87]. Sleep mode operation for IEEE 802.16m. C802.16m-08/721rl, July 2008
[88]. Keep-awake mechanism for 802.16m sleep mode. C802.16m-08/718, July 2008
[89]. Cicconetti C, Lenzini L, Mingozzi E, Eklund C. Quality of Service Support in IEEE 802.16 Networks. IEEE/ACM Transactions on Networking, 2006; 50–55.
[90]. Bertsekas D, Gallager R. Data Networks, 2nd ed. Englewood Cliffs. NJ: Prentice-Hall, 1992.
[91]. Lee H, Kwon T, Cho DH, Lim G, Chang Y. Performance Analysis of Scheduling Algorithms for VoIP Services in IEEE 802.16e Systems. Proceedings of IEEE 63rd Vehicular Technology Conference, May 2006; 3(7-10):1231–1235.

無法下載圖示 全文公開日期 2015/06/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2017/06/14 (國家圖書館:臺灣博碩士論文系統)
QR CODE