簡易檢索 / 詳目顯示

研究生: 廖一全
Yi-Chuan Liao
論文名稱: 應用於WiMAX網路保證最低比率頻寬分配法
A scheduling algorithm to insure minimum bandwidth ratio -a scheduling algorithm for WiMAX network
指導教授: 陳漢宗
Hann-Tzong Chern
口試委員: 黎碧煌
Bih-Hwang Lee
吳乾彌
Chen-Mie Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 48
中文關鍵詞: BA-QLQoSWiMAXIEEE 802.16RR
外文關鍵詞: BA-QL, QoS, WiMAX, IEEE 802.16, RR
相關次數: 點閱:271下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   全球互通微波存取(WiMAX)是第四代的無線寬頻網路標準,它具有低成本、高速率與較大的傳輸距離,且可提供多種不同類型的服務品質(Quality of Serve, QoS) 。 因此在不同應用上,要使這些不同QoS的封包能夠有效使用網路資源就非常重要。為了分配有限的頻寬,使得即時性資料的流量與延遲時間得以確保,並且避免非即時性資料出現等不到分配的機會(starvation of bandwidth),WiMAX網路需要一個很有效率的排程法。然而,在IEEE 802.16標準中並沒有提供上下載頻寬分配的排程法,這部分將留給通訊設備商和學者自行設計,因此這方面,有非常多的探討與研究。
      本論文中將會提出適應於不同比例資料流負載下,可保證各等級連線能獲得最低額定頻寬的一種演算法,因從考慮佇列長度頻寬分配法中(BAQL)發現,在不同負載比例下,需要根據負載比例來更動加權值,才可達到保證頻寬,所以我們為了要解決此一缺點,提出保證最低比率頻寬演算法。一開始根據考慮佇列長度頻寬分配法推算出各個佇列所分配到的頻寬,再根據各個佇列被保證的最低比率,使用保證最低比率頻寬演算法來調整各個佇列所分配到的頻寬,來達到我們所設定的額定頻寬。最後把模擬結果與考慮佇列長度的頻寬分配法做一比較,在不超越BAQL限制下,所得到的性能評估確實能保證最低比率頻寬。


    Worldwide Interoperability for Microwave Access (WiMAX) is a 4G broadband wireless access (BWA) technology. It provides low cost deployment, high data rate and large coverage. WiMAX supports Quality of Service (QoS) for five types of applications. Thus, it is very important to allocate network resource to different classes of traffic efficiently so that the delay of real-time service can be guaranteed and the starvation of bandwidth for non-real-time service can also be avoided. Nevertheless, the IEEE 802.16 standard does not define radio resource management and scheduling algorithm. This is left for designers and researchers to explore.

      In this study, we propose an algorithm in which each connection can get a minimum ratio of bandwidth for all kind of traffic loads. In bandwidth allocation according to queue length (BAQL), weight is decided by the queue length and allocated bandwidth is proportional to the load. Therefore, the QoS requirement of real-time traffic cannot be satisfied. Although the real-time traffic can be assigned more bandwidth by multiplying a constant αwith its queue length, it is very difficult to design this constant for a required QoS. Therefore, we propose an algorithm in this paper to assure the minimum ratio of bandwidth for real-time traffic. We simulate it with BAQL and the result is the same as predicted. The QoS requirement of real-time traffic can be satisfied with this algorithm.

    論文摘要 I ABSTRACT II 誌 謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章: 序論 1 1.1 前言 1 1.2 研究目的與動機 3 1.3 本篇論文架構 4 第二章: 相關背景研究 5 2.1 IEEE 802.16 標準沿革介紹 5 2.2 IEEE 802.16 網路型態架構 9 2.3 IEEE 802.16 實體層 11 2.3.1 分頻雙工和分時雙工 11 2.3.2 正交分頻多工和正交分頻多工存取 13 2.3.3 IEEE 802.16訊框架構 15 2.4 IEEE 802.16 MAC層 16 2.4.1連線與服務流 18 2.5 WiMAX QoS 服務類型 19 2.6 相關研究 23 第三章: 系統架構與排程設計 29 3.1 IEEE 802.16 系統架構 29 3.2 連線允入控制(Connection Admission Control, CAC) 30 3.3 保證最低比率頻寬分配法 31 第四章: 模擬結果 36 4.1 模擬環境概述 36 4.2 模擬環境與參數 37 4.3 模擬結果與分析 40 第五章: 結論 46 參考文獻 47

    [1] IEEE STD 802.16™-2012, “IEEE Standard for Air Interface for Broadband Wireless Access Systems,” August 2012.
    [2] 許博涵,「應用於WiMAX網路考慮佇列長度的頻寬分配法」,台灣科技大學研究所論文,未發表,台北市,2012。
    [3] “Non-line-of-sight propagation.”
    Available: http://en.wikipedia.org/wiki/Non-line-of-sight_propagation.
    [4] “Non-line-of-sight propagation.”
    Available: http://en.wikipedia.org/wiki/Line-of-sight_propagation.
    [5] D. Satish Kumar and N. Nagarajan, “Relay Technologies in IEEE 802.16j Mobile Multi-hop Relay (MMR) Networks,” in Computer Engineering and Intelligent Systems, vol. 2, no. 3, pp. 105-113, 2011.
    [6] IEEE宣佈IEEE 802系列標準技術升級。 http://www.edntaiwan.com/ART_8800509863_3000004_NP_204d21cb.HTM.
    [7] S. W. Kim, W. Sung and J. W. Jang, “Enhanced Throughput and QoS Fairness for Two-Hop IEEE 802.16j Relay Networks,” in Journal of Communications and Networks, vol. 13, no. 1, pp. 32-42, February 2011.
    [8] Intel Application Note, “Orthogonal Frequency Division Multiplexing”, 2004.
    [9] N. Nikopoulos and G. Yovanof, WIMAX MAC SCHEDULER DESIGN & EXTENSIBLE SIMULATION FRAMEWORK FOR NETWORK SIMULATOR (NS-2), April 2008.
    [10] 洪文堅、謝智強,「探索WiMAX MAC技術採需求/答允機制實現服務分級」,新通訊元件雜誌,2006,63期。
    [11] Sami Ben-Guedria, Brunilde Sanso, Jean-Francois Frigon, “PolyMAX, a Mobile WiMAX module for the ns-2 simulator with QoS and AMC support,” in Simulation Modelling Practice and Theory, vol. 19, pp. 2076-2101, July 2011.
    [12] C. So-In, R. Jain and A. K. Tamimi, “Scheduling in IEEE 802.16e Mobile WiMAX Networks: Key Issues and a Survey,” in IEEE Journal on Selected Areas in Communication, vol. 27, no. 2, pp. 156-171, February 2009.
    [13] A. Demers, S. Keshav and S. Shenker, “Analysis and simulation of a fair queueing algorithm,” in SIGCOMM '89 Symposium proceedings on Communications architectures & protocols, vol. 19, no. 4, pp. 1-12, September 1989.
    [14] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round-robin,” in IEEE/ACM Transactions on Networking, vol. 4, no. 3, pp. 375-385, June 1996.
    [15] C. Cicconetti, L. Lenzini and E. Mingozzi, “Quality of Service Support in IEEE 802.16 Networks,” in IEEE Network Magazine, vol. 20, pp. 50-55, April 2006.
    [16] H. C. Jang and K. C. Yang, “A QoS Aware Multi-Modulation CAC for WiMax,” in International Symposium on Computer Science and Society, pp. 365-368, 2011.
    [17] The NS simulator and the documentation.
    Available: http://www.isi.edu/nsnam/ns/.
    [18] J. Chen, C. C. Wang, C. D. Tsai, C. W. Chang, S. S. Liu, J. Guo, W. J. Lien, J. H. Sum and C. H. Hung, “The Design and Implementation of WiMAX Module for ns-2 Simulator”, Proc. of the ACM/ISCT/ VALUETOOLS, October 2006.

    QR CODE