簡易檢索 / 詳目顯示

研究生: 黃凱翔
Kai-Hsiang Huang
論文名稱: 調適性根據封包剩餘時間WiMAX網路的比率限制排程法
Adaptive Ratio Limited Scheduling Algorithm for WiMAX Network according to Packet Left Time
指導教授: 陳漢宗
Hann-Tzong Chern
口試委員: 黎碧煌
Bih-Hwang Lee
王蒼容
Chun-Long Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 61
中文關鍵詞: IEEE 802.16WiMAX排程演算法服務品質剩餘時間
外文關鍵詞: IEEE 802.16, WiMAX, scheduling algorithm, Quality of Service (QoS), left time
相關次數: 點閱:292下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   IEEE 802.16標準是一種無線都會網路技術,其具有高傳輸速率、較廣的訊號覆蓋與支援多媒體服務等優點。為了滿足不同需求的資料服務,IEEE 802.16標準定義了多種服務品質(Quality of Service, QoS)類別。然而,在IEEE 802.16標準中並沒有定義頻寬分配的排程演算法,因此,如何設計一個好的排程演算法來滿足所有服務品質類別的需求就成為了主要探討與研究的議題。
      在根據封包剩餘時間的比率限制排程法中[1],延伸之即時輪詢服務(ertPS)的比率限制是固定的,因此,當ertPS的負載過重時,由於使用掉大部分的頻寬,即時輪詢服務(rtPS)的封包遺失率會變得無法接受。所以,在本論文中,我們將根據目前rtPS的封包遺失率來動態調整ertPS的比率限制。目的是在ertPS性能可以接受的範圍內,犧牲部分分配頻寬來改善rtPS的封包遺失率。第一回合將緊急封包(剩餘時間小於等於一個訊框時間的封包)在當前的訊框排程傳送。第二回合先算出每個佇列的封包平均剩餘時間T,接著根據目前rtPS的封包遺失率調整ertPS與rtPS各別的剩餘時間比率x與y,佇列中ertPS與rtPS的封包剩餘時間各別小於等於排程門檻x.T與y.T,就在當前訊框將它排程,直到所有的即時性服務佇列都被服務完或頻寬已用盡為止。若第二回合排程結束仍有頻寬剩下,則第三回合使用加權公平排程演算法(WFQ)將剩餘頻寬分配給所有的佇列,由於即時性封包已經被先排程過,所以本論文中各個等級的佇列賦予相同的權重。
      模擬結果顯示,動態調整ertPS與rtPS的排程門檻,會使ertPS的性能在可接受的範圍內變差,以改善rtPS的封包遺失率。


      IEEE 802.16 Standard is a Wireless Metropolitan Area Network (WMAN). Its advantages are high transmission rate, wide signal coverage, multimedia service support, .... In order to satisfy a variety of demanded data services, IEEE 802.16 defines several types of Quality of Service (QoS) classes. Nevertheless, in IEEE 802.16, the scheduling algorithms for allocating bandwidth is not defined. Therefore, to design an excellent scheduling algorithm satisfying the QoS requirements of all classes becomes a main research topic.
      In “Ratio Scheduling Algorithm according to Packet Left Time”, the ratio for extended real-time Polling Service (ertPS) is fixed [1]. Therefore, when the traffic load of ertPS is too high and uses most of the bandwidth, the packet loss rate of real-time Polling Service (rtPS) will become not acceptable. In this paper, the ratio limit of ertPS will be adjusted dynamically according to the current packet loss rate of rtPS. The packet loss rate of rtPS will be improved and that of ertPS will be in the controlled range. In the first round, the emergency packets (the packets must be sent in this frame because of the deadline) will be scheduled in this frame. In the second round, the average left Time T of packets for each class is calculated. Then, the left time ratios of ertPS and rtPS are set as x and y respectively. If the left time of a packet in the queue of ertPS or rtPS is not larger than the scheduling threshold x.T or y.T, this packet will be scheduled in this frame. The packets of all real-time packets will be checked one by one until all packets satisfying the conditions are scheduled or the bandwidth of this frame is exhausted. If there are remaining bandwidth left after this round, Weighted Fair Queue (WFQ) will be used in the third round to allocate bandwidth for the left packets. Since real-time packets are scheduled in the first two rounds, queues of all classes will have the same weight in this round.
      The simulation result indicates that if we dynamically adjust the scheduling threshold of ertPS and rtPS, the performance of ertPS will become worse in the acceptable range, and rtPS will be improved.

    論文摘要...........................I ABSTRACT..........................III 誌謝.............................V 目錄.............................VI 圖目錄............................VIII 表目錄............................X 第一章 序論.........................1  1.1 前言.........................1  1.2 研究目的與動機....................3  1.3 論文章節架構.....................4 第二章 相關背景研究.....................5  2.1 IEEE 802.16家族介紹................5  2.2 IEEE 802.16傳輸架構................8   2.2.1 點對多點網路架構.................8   2.2.2 中繼網路架構...................9   2.2.3 網狀網路架構...................10  2.3 IEEE 802.16實體層.................11   2.3.1 雙工模式.....................11   2.3.2 IEEE 802.16的傳輸技術.............13   2.3.3 IEEE 802.16的訊框結構.............16  2.4 IEEE 802.16媒介存取控制層.............17   2.4.1 收斂子層.....................18   2.4.2 通用子層.....................19   2.4.3 安全子層.....................21  2.5 WiMAX的服務品質類型.................22  2.6 IEEE 802.16的相關排程研究.............26 第三章 系統架構與排程設計..................30  3.1 IEEE 802.16網路架構................30  3.2 連線允入控制.....................31  3.3 調適性根據封包剩餘時間WiMAX網路的比率限制排程法...32 第四章 模擬環境介紹與結果..................37  4.1 模擬環境介紹.....................37  4.2 網路模擬拓樸與參數..................38  4.3 模擬結果與分析....................39 第五章 結論.........................45 參考文獻...........................46

    [1] 楊舜帆(2014)。根據封包剩餘時間WiMAX網路的比率限制排程法 A ratio limited scheduling algorithm for WiMAX network according to packet remaining time。國立臺灣科技大學電子工程系碩士論文,臺北市。
    [2] Wireless Standard. RFiD Centre. Retrieved from http://www.rfidc.com/docs/introductiontowireless_standards.htm
    [3] IEEE Draft Amendment Standard for Local and Metropolitan Area Networks - Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems - Advanced Air Interface. (2010). IEEE P802.16m/D6 May 2010, 1-932.
    [4] Oktay, M. & Mantar, H. A. (2011, January). A Real-Time Scheduling Architecture for IEEE 802.16 - WiMAX Systems. Paper presented at the 2011 IEEE 9th International Symposium on Applied Machine Intelligence and Informatics (SAMI).
    [5] 李俊杰(2016)。使用到達程序之平均值與標準差的頻寬分配法:WiMAX網路的一個排程演算法 Bandwidth Allocation Using the Mean & Standard deviation of Arrival Process: A Scheduling Algorithm for WiMAX Network。國立臺灣科技大學電子工程系博士論文,臺北市。
    [6] IEEE Standard for Air Interface for Broadband Wireless Access Systems - Redline. (2012). IEEE Std 802.16-2012 (Revision of IEEE Std 802.16-2009) - Redline, 1-2542.
    [7] Andrews, J. G., Ghosh, A. & Muhamed, R. (2007). Fundamentals of WiMAX: Understanding Broadband Wireless Networking: Prentice Hall.
    [8] Ohrtman, F. (2005). WiMAX HANDBOOK Building 802-16 Wireless Networks: McGraw-Hill Education.
    [9] Ohno, Y., Shimizu, T., Hiraguri, T. & Nakatsugawa, M. (2009, April). Novel Frame Structures to Improve System Capacity and Latency Performance of a Time-Division Duplex Multihop Relay Wireless Access System. Paper presented at the 2009 IEEE Wireless Communications and Networking Conference.
    [10] 4G WIRELESS EVOLUTION COFERENCE. (2009). SlidePlayer. Retrieved from http://slideplayer.com/slide/4680109/
    [11] Nuaymi, L. (2007). WiMAX: Technology for Broadband Wireless Access: Wiley.
    [12] 許獻聰(2009)。WiMAX無線網路技術系列。國立中央大學通訊工程系,桃園縣。
    [13] IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems. (2004). IEEE Std 802.16-2004 (Revision of IEEE Std 802.16-2001), 0_1-857. doi:10.1109/IEEESTD.2004.226664
    [14] IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1. (2006). IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor 1-2005 (Amendment and Corrigendum to IEEE Std 802.16-2004), 0_1-822. doi:10.1109/IEEESTD.2006.99107
    [15] 陳政隅(2013)。應用於WiMAX網路考慮佇列長度與封包遺失率的頻寬分配法 Bandwidth Allocation according to Queue Length and Packet Loss Rate - a Scheduling Algorithm for WiMAX Network。國立臺灣科技大學電子工程系碩士論文,臺北市。
    [16] 陳麒安(2014)。應用於WiMAX網路考慮封包最後時限的排序法 A scheduling algorithm for WiMAX network by considering the last deadline of packet。國立臺灣科技大學電子工程系碩士論文,臺北市。
    [17] 李聖宏(2015)。應用於WiMAX網路依頻寬需求調變的輪詢法 Polling according to the bandwidth request for WiMAX network。國立臺灣科技大學電子工程系碩士論文,臺北市。
    [18] Hahne, E. L.& Gallager, R. G. (1986, June). Round robin scheduling for fair flow control in Data Communication Networks. International Conference on Communications.
    [19] Demers, A., Keshav, S. & Shenker, S. (1989, September). Analysis and simulation of a fair queuing algorithm. SIGCOMM 1989 Symposium proceedings on Communications architectures & protocols.
    [20] Cicconetti, C., Erta, A., Lenzini, L. & Mingozzi, E. (2007). Performance Evaluation of the IEEE 802.16 MAC for QoS Support. IEEE Transactions on Mobile Computing, 6(1), 26-38. doi:10.1109/TMC.2007.250669
    [21] Zubairi, J. A., Erdogan, E. & Reich, S. (2015, July). Experiments in fair scheduling in 4G WiMAX and LTE. Paper presented at the 2015 International Conference on High Performance Computing & Simulation (HPCS).
    [22] Shreedhar, M. & Varghese, G. (1996). Efficient fair queuing using deficit round-robin. IEEE/ACM Transactions on Networking, 4(3), 375-385. doi:10.1109/90.502236
    [23] Lu, S., Bharghavan, V. & Srikant, R. (1999). Fair scheduling in wireless packet networks. IEEE/ACM Transactions on Networking, 7(4), 473-489. doi:10.1109/90.793003
    [24] Cicconetti, C., Lenzini, L., Mingozzi, E. & Eklund, C. (2006). Quality of service support in IEEE 802.16 networks. IEEE Network, 20(2), 50-55. doi:10.1109/MNET.2006.1607896
    [25] Sagar, V. & Das, D. (2008, November). Modified EDF algorithm and WiMAX architecture to ensure end-to-end delay in multi-hop networks. Paper presented at the TENCON 2008 - 2008 IEEE Region 10 Conference.
    [26] Wongthavarawat, K. & Ganz, A. (2003, February). Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems. International Journal of Communication systems, volume 16, issue 1.
    [27] Chen, J., Jiao, W. & Wang, H. (2005, May). A service flow management strategy for IEEE 802.16 broadband wireless access systems in TDD mode. Paper presented at the IEEE International Conference on Communications, 2005. ICC 2005. 2005.
    [28] Iera, A., Molinaro, A., Pizzi, S. & Calabria, R. (2007). Channel-Aware Scheduling for QoS and Fairness Provisioning in IEEE 802.16/WiMAX Broadband Wireless Access Systems. IEEE Network, 21(5), 34-41. doi:10.1109/MNET.2007.4305171
    [29] Chen, J., Wang, C., Tsai, C., Chang, C., Liu, S., Guo, J., Lien, W., Sum, J. & Hung, C. (2006, October). The Design and Implementation of WiMAX Module for ns-2 Simulator. ACM International Conference Proceeding Series, 202. doi:10.1145/1190455.1190458

    QR CODE