簡易檢索 / 詳目顯示

研究生: 丁品翔
Pin-Hsiang Ting
論文名稱: DLP型光固化3D列印混合式火箭燃料藥柱之研究
The Research on DLP-type photo-curing 3D printing hybrid rocket fuel grains
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 曾修暘
魏世昕
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 126
中文關鍵詞: 3D列印光固化混合式燃料火箭特殊結構藥柱
外文關鍵詞: 3D printing, photopolymerization, hybrid fuel rocket, special structure grain
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 混合式火箭具備固、液態火箭易運送及保存、控制性佳等優點,但藥柱燃燒退縮率低,無法大規模應用。過去改善結構以提升退縮率研究著重於使用複數孔、螺紋設計,但受限材料只可使用傳統加工,可製作結構受限。積層製造技術突破了製程限制,為製作複雜結構藥柱的新方法,但仍面臨精度、材料性質等問題。相較其他技術,DLP型光固化3D列印技術提高製造速度和精度,且材料不受熱變形。然而光固化材料在混合式燃料火箭藥柱的應用較少被探討。本研究旨在調配具有一定機械及燃燒性質光固化材料,並製造不同結構藥柱,進行燃燒測試並評估其效果。
    本研究調配了兩種以脂肪族聚氨酯丙烯酸酯及甲基丙烯酸月桂酯(LMA)作為主體的光固化材料系統。為確保材料具有所需的機械強度和燃燒性質,製作試片進行機械、燃燒性質的測試。透過評估機械及燃燒性質後,在以脂肪族PUA系列中選擇了PIH-532,LMA系列中選擇LIT-424製作小型藥柱,使用自行搭建的燃燒試驗系統進行測試。與文獻材料(PP、ABS)進行比較發現,PIH-532比PP高約8%,LIT-424比PP、ABS則各高出約40%、25%,並觀察到尾焰長度與燃燒退縮率具有正相關。此外製作的兩種特殊內部結構藥柱,星型螺旋藥柱的燃燒退縮率相較直孔實心藥柱提高60%及81%。透過觀察各種結構藥柱的燃燒過程,並驗證了緻密多孔結構能增加燃燒表面積,從而具有其燃燒效果。最後透過熱重分析(TGA)試驗測試得出交聯密度低的光固化高分子材料會燃燒時最先產生裂解,交聯密度高的多官能數單體、寡聚物會須較高溫度才會產生裂解。


    The hybrid rocket boasts advantages in easy transport and storage, akin to solid and liquid rockets, offering good controllability. However, its propellant's low combustion regression rate limits its widespread use. Prior studies focused on enhancing this rate through porous or helical designs, constrained by materials compatible only with traditional manufacturing, thereby restricting structural possibilities. Additive manufacturing has broken these constraints, allowing for complex propellant structures. Yet, challenges persist concerning precision and material properties. In comparison, DLP-type photo-curing 3D printing technology enhances production speed and accuracy while maintaining material integrity. However, the application of photo-curing materials in hybrid rocket propellants remains underexplored. This study aims to develop light-curing materials with specific mechanical and combustion properties, fabricate various structural propellants, conduct combustion tests, and evaluate their efficacy.
    This study developed two photopolymer material systems using aliphatic polyurethane acrylate and lauryl methacrylate (LMA) as the main components. To ensure the materials possessed the required mechanical strength and combustion properties, specimens underwent mechanical and combustion property tests. Following the evaluation of these properties, PIH-532 from the aliphatic PUA series and LIT-424 from the LMA series were selected to manufacture small-scale rocket motors. Tests were conducted using a self-constructed combustion testing system. Comparative analysis with reference materials (PP, ABS) revealed that PIH-532 outperformed PP by approximately 8%, while LIT-424 surpassed PP and ABS by around 40% and 25%, respectively. Positive correlations between flame length and burnback rate were observed. Moreover, the burnback rates of two specially designed internally structured rocket motors, particularly the star-shaped spiral design, increased by 60% and 81%, respectively, compared to the solid straight-hole motor. Through the observation of the combustion processes of various motor structures, it was confirmed that dense porous structures increased the combustion surface area, thereby enhancing their burning efficiency. Finally, thermal gravimetric analysis (TGA) tests indicated that low cross-linking density photopolymer materials exhibited early decomposition during combustion, while those with high cross-linking density, including multi-functional monomers and oligomers, required higher temperatures to initiate decomposition.

    摘要 i Abstract ii 致謝 iv 圖目錄 ix 表目錄 xv 第1章、緒論 1 1.1前言 1 1.2研究動機與目的 2 1.3研究方法 4 1.4論文架構 5 第2章、文獻回顧 7 2.1混合式燃料火箭(Hybrid rocket) 7 2.1.1混合式燃料火箭藥柱使用及研究材料 9 2.1.2 使用特殊結構藥柱相關研究 14 2.1.3 3D列印應用於混合式燃料火箭藥柱介紹 19 2.2藥柱火焰燃燒機制 24 第3章、研究材料、設備與方法 26 3.1 DLP型3D列印技術 26 3.1.1動態光罩產生器 28 3.1.2控制軟體 29 3.2研究材料 30 3.2.1 材料選用標準 30 3.2.2選用材料 31 3.2.3燃料藥柱配方 39 3.2.4 對比用之材料 41 3.3 測試方法 44 3.3.1拉伸測試 44 3.3.2 初步燃燒測試 44 3.4 藥柱燃燒試驗 46 3.4.1藥柱燃燒裝置及藥柱尺寸 46 3.4.2 特殊內部結構藥柱設計 52 3.4.3 測試方法與流程 54 3.4.4結果分析方法 55 3.5材料熱性質分析 59 3.5.1熱重分析(TGA) 59 3.6列印參數設定及後處理 60 3.6.1列印參數設定 60 3.6.2 列印後處理 66 第4章、材料性質結果分析 69 4.1 拉伸測試 69 4.1.1 脂肪族聚氨酯丙烯酸酯(脂肪族PUA)系列 69 4.1.2 甲基丙烯酸月桂酯(LMA)系列 75 4.2 初步燃燒研究 80 4.2.1 脂肪族聚氨酯丙烯酸酯(脂肪族PUA)系列 80 4.2.2 甲基丙烯酸月桂酯(LMA)系列 83 4.3 材料性質比較 86 4.3.1 脂肪族聚氨酯丙烯酸酯(脂肪族PUA)系列 86 4.3.2 甲基丙烯酸月桂酯(LMA)系列 87 第5章、藥柱燃燒試驗及材料熱性質分析結果 89 5.1燃燒退縮率( regression rate)結果 89 5.1.1光固化材料與文獻材料結果比較 89 5.1.2 星型螺旋結構與直孔實心比較 93 5.2燃燒尾焰對比 97 5.2.1直孔實心藥柱尾焰比較 98 5.2.2特殊內部結構藥柱燃燒尾焰比較 102 5.3材料熱分析結果 111 5.3.1熱重分析(TGA)結果 111 5.4本章討論 114 第6章、結論與未來研究展望 117 6.1結論 117 6.2未來研究展望 119 第7章、參考文獻 120 附錄 126

    1. 喬治.桑頓,1993,火箭推進原理,協志工業叢書
    2. Denny, M., & McFadzean, A. (2019). Rocket Science. Springer International Publishing.
    3. El-Sayed, A. F. 2016. Fundamentals of aircraft and rocket propulsion. Springer-Verlag London, pp.907..
    4. 楊奇融, & 吳宗信. (2015). 混合式火箭推進劑燃料 HTPB 藥柱之製程優化及機械性質研究, 國立交通大學 (Master's thesis).
    5. McFarland, M., & Antunes, E. (2019). Small-scale static fire tests of 3D printing hybrid rocket fuel grains produced from different materials. Aerospace, 6(7), 81.
    6. Bisin, R., & Paravan, C. (2023). A new strategy for the reinforcement of paraffin-based fuels based on cellular structures: The armored grain—Ballistic characterization. Acta Astronautica, 206, 284-298.
    7. Wang, Z., Lin, X., Li, F., & Yu, X. (2020). Combustion performance of a novel hybrid rocket fuel grain with a nested helical structure. Aerospace Science and Technology, 97, 105613.
    8. Armold, D. M. (2014). Formulation and characterization of paraffin-based solid fuels containing swirl inducing grain geometry and/or energetic additives. , The Pennsylvania State University (Master's thesis)
    9. Oztan, C., & Coverstone, V. (2021). Utilization of additive manufacturing in hybrid rocket technology: A review. Acta astronautica, 180, 130-140.
    10. Mazzetti, A., Merotto, L., & Pinarello, G. (2016). Paraffin-based hybrid rocket engines applications: A review and a market perspective. Acta Astronautica, 126, 286-297.
    11. Karabeyoglu, M. A., Altman, D., & Cantwell, B. J. (2002). Combustion of liquefying hybrid propellants: Part 1, general theory. Journal of Propulsion and Power, 18(3), 610-620.
    12. Karabeyoglu, M., Cantwell, B., & Altman, D. (2001, July). Development and testing of paraffin-based hybrid rocket fuels. In 37th Joint Propulsion Conference and Exhibit (p. 4503).
    13. Piscitelli, F., Saccone, G., Gianvito, A., Cosentino, G., & Mazzola, L. (2018). Characterization and manufacturing of a paraffin wax as fuel for hybrid rockets. Propulsion and Power Research, 7(3), 218-230.
    14. Li, M. C., Wei, S. S., Hung, C. H., & Wu, J. S. (2022). Experimental and numerical investigation of swirling H2O2 and polypropylene hybrid rocket motor with regenerative cooling. Acta Astronautica, 190, 283-298.
    15. Wei, S. S., Lee, M. C., Huang, J. W., Lu, Y., Kang, C. H., Kao, S. T., ... & Wu, J. S. (2022). Demonstration of tethered hovering flight of HTTP-3AT hybrid rocket. Acta Astronautica, 191, 279-292.
    16. Aphale, S. S., Budzinski, K., Surina III, G., & DesJardin, P. E. (2021). Influence of O2/N2 oxidizer blends on soot formation and radiative heat flux in PMMA-air 2D slab burner for understanding hybrid rocket combustion. Combustion and Flame, 234, 111628.
    17. Vignesh, B., & Kumar, R. (2020). Effect of multi-location swirl injection on the performance of hybrid rocket motor. Acta Astronautica, 176, 111-123.
    18. Kim, S., Lee, J., Moon, H., Kim, J., Sung, H., & Kwon, O. C. (2013). Regression characteristics of the cylindrical multiport grain in hybrid rockets. Journal of propulsion and power, 29(3), 573-581.
    19. Vonderwell, D. J., Murray, I. F., & Heister, S. D. (1995). Optimization of hybrid-rocket-booster fuel-grain design. Journal of Spacecraft and Rockets, 32(6), 964-969.
    20. Glaser, C., Gelain, R., Bertoldi, A. E. M., Levard, Q., Hijlkema, J., Lestrade, J. Y., ... & Anthoine, J. (2023). Experimental regression rate profiles of stepped fuel grains in Hybrid Rocket Engines. Acta Astronautica, 204, 186-198.
    21. Wei, T., Cai, G., Tian, H., Zhang, Y., Li, C., & Meng, X. (2023). Experimental Research on Reconstruction Techniques for Instantaneous Regression Rate of Hybrid Rocket Motor with Single-Port Wagon Wheel Fuel Grain. Aerospace, 10(5), 440.
    22. Whitmore, S. A., Walker, S. D., Merkley, D. P., & Sobbi, M. (2015). High regression rate hybrid rocket fuel grains with helical port structures. Journal of Propulsion and Power, 31(6), 1727-1738.
    23. Lee, C., Na, Y., Lee, J. W., & Byun, Y. H. (2007). Effect of induced swirl flow on regression rate of hybrid rocket fuel by helical grain configuration. Aerospace Science and Technology, 11(1), 68-76.
    24. Tian, H., et al., Regression rate characteristics of hybrid rocket motor with helical grain. Aerospace Science and Technology, 2017. 68: p. 90-103.
    25. Tian, H., Li, Y., Li, C., & Sun, X. (2017). Regression rate characteristics of hybrid rocket motor with helical grain. Aerospace Science and Technology, 68, 90-103.
    26. Grefen, B., Becker, J., Linke, S., & Stoll, E. (2021). Design, production and evaluation of 3d-printed mold geometries for a hybrid rocket engine. Aerospace, 8(8), 220.
    27. Yu, X., Yu, H., Zhang, W., DeLuca, L. T., & Shen, R. (2022). Effect of penetrative combustion on regression rate of 3D printed hybrid rocket fuel. Aerospace, 9(11), 696.
    28. Saito, Y., Yokoi, T., Yasukochi, H., Soeda, K., Totani, T., Wakita, M., & Nagata, H. (2018). Fuel regression characteristics of a novel axial-injection end-burning hybrid rocket. Journal of Propulsion and Power, 34(1), 247-259.
    29. McClain, M. S., Afriat, A., Rhoads, J. F., Gunduz, I. E., & Son, S. F. (2020). Development and characterization of a photopolymeric binder for additively manufactured composite solid propellant using vibration assisted printing. Propellants, Explosives, Pyrotechnics, 45(6), 853-863.
    30. Zilliac, G., & Karabeyoglu, M. (2006, July). Hybrid rocket fuel regression rate data and modeling. In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (p. 4504).
    31. Santoliquido, O., Colombo, P., & Ortona, A. (2019). Additive Manufacturing of ceramic components by Digital Light Processing: A comparison between the “bottom-up” and the “top-down” approaches. Journal of the European Ceramic Society, 39(6), 2140-2148.
    32. Yue, L., Li, G., He, G., Guo, Y., Xu, L., & Fang, W. (2016). Impacts of hydrogen to carbon ratio (H/C) on fundamental properties and supercritical cracking performance of hydrocarbon fuels. Chemical Engineering Journal, 283, 1216-1223.
    33. 雙鍵化工股份有限公司,(2024,January 24), 雙鍵化工產品介紹, https://www.dbc.com.tw/tw/about.php
    34. 恆橋產業股份有限公司, (2024,January 24),恆橋產業產品介紹, https://www.chembridge.com.tw/
    35. 塑晶塑膠有限公司, (2024,January 24),產品介紹, http://www.suh-ching.com.tw/product.php
    36. 友亮科技股份有限公司, (2024,January 24),產品介紹. http://www.youlight.com.tw/3dp_filament.htm
    37. Materials, A.S.f.T.a. (2024,January 24), Annual Book of ASTM Standards., https://www.astm.org/products-services/bos.html
    38. 久德電子(2024,January 24),質量式流量計/氣體流量計, https://www.jetec.com.tw/chinese/product1-3_MF5700.html
    39. Carmicino, C., & Russo Sorge, A. (2015). Experimental investigation into the effect of solid-fuel additives on hybrid rocket performance. Journal of Propulsion and Power, 31(2), 699-713.
    40. Chiaverini, M. J., Kuo, K. K., Peretz, A., & Harting, G. C. (2001). Regression-rate and heat-transfer correlations for hybrid rocket combustion. Journal of Propulsion and Power, 17(1), 99-110.
    41. 國立陽明交通大學前瞻火箭研究中心(ARRC, Advanced Rocket Research Center) (2024,January 24),https://arrc.tw/zh-TW/

    無法下載圖示
    全文公開日期 2122/01/24 (校外網路)
    全文公開日期 2029/01/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE