簡易檢索 / 詳目顯示

研究生: 周敬展
Ching-Chan Chou
論文名稱: 利用3D列印模具和超音波溶解技術來製作全透明且非平面微流道晶片
Fabrication of a Transparent and Nonplanar Microfluidic Chip by Using 3D-Printed Polymeric Mold Insert and Sonication-Assisted Dissolution Technique
指導教授: 陳品銓
Pin-Chuan Chen
口試委員: 曹嘉文
Chia-Wen Tsao
莊賀喬
Ho-Chiao Chuang
田維欣
Wei-Hsin Tien
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 118
中文關鍵詞: 非平面微流道超音波溶解3D列印丙烯腈丁二烯苯乙烯(ABS)人體血管組織
外文關鍵詞: Nonplanar microfluidic, Sonication dissolution, 3D printing, Acrylonitrile Butadiene Styrene, Vascular
相關次數: 點閱:254下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究的目的是開發一新穎製程技術,製造全透明非平面微流體晶片,未來可用來製造仿生人體組織結構,運用在生物領域的細胞養殖上或是體內化學領域藥劑傳輸的研究上。在本製程中,將利用3D列印技術、表面拋光技術、PDMS澆注技術、以及二階段化學溶液溶解技術。
      本論文分成兩階段,第一階段是利用3D列印中的熱熔擠製成型技術(Fused Deposition Modeling)製作非平面之丙烯腈丁二烯苯乙烯ABS微流道模具,並利用自製的表面拋光系統減少3D列印模具的表面粗糙度。第一階段的研究重點在於討論數個模具及列印參數對於製造非平面模具的影響。參數包括模具設計、列印的支撐材設定及選擇、如何解決翹曲問題以及化學拋光系統對非平面模具表面的影響。在第二階段中將利用圍牆結構及聚二甲基矽氧烷(PDMS)澆注技術,對第一階段的3D列印模具進行結構複製,最後步驟是利用化學溶液溶解技術及超音波輔助溶解技術溶解3D列印非平面模具,即可完成全透明非平面PDMS微流體晶片。
      本研究的結論為:(1)此新穎的製程技術可用來成功製造全透明且非平面的微流道晶片;(2)此製程的必要步驟包括:3D列印非平面模具、化學拋光處理、二階段化學溶液溶解技術、PDMS翻模技術,此研究成果讓發展幾十年的生醫晶片由平面結構延伸成非平面結構,讓生醫晶片融入更多的非平面微流體結構;(3)超音波輔助溶解技術可以加速且完全溶解PDMS中的ABS,是本製程中最關鍵的一項技術;(4)三維度微流道結構相較平面結構更能模擬微觀人體組織,透過本研究所開發之製程,可大幅提高三維度微流道晶片設計之複雜性,更能符合臨床實驗的模擬結果,對往後醫療領域發展方面有重大的貢獻。


      The aim of this research is to develop a novel manufacturing process to create fully transparent and nonplanar microfluidic chip, which can be used as bionic human tissue structure for applications in the biology cell culture or chemical medicine transportation fields. Multiple manufacturing processes would be used to crate nonplanar microfluidic chip in this article, including 3D printing technique, solvent surface treatment technique, casting technique, and two steps solvent dissolution technique.
      This thesis can be separated into two major stages: the goal of the first stage is to fabricate nonplanar microfluidic mold by using The Fused Deposition Modeling (FDM) 3D printing technique to fabricate nonplanar thermoplastic mold inserts with material of acrylonitrile butadiene styrene (ABS). Using a home-built solvent polish system to minimize the surface roughness of nonplanar mold. The influence from several parameters were discussed in the first stage, including mold design, support material setting and choose, bending problem and solvent surface treatment performance. The second stage of the extension form the first stage, and the goal is to nonplanar microfluidic chip. The fabrication process included fabrication of nonplanar microfluidic mold insert, fence structure and PDMS casting, solvent dissolution technique and sonication-assisted dissolution technique.
      The conclusions from this research are: (1) this novel fabrication process can be used to fabricate fully transparent, nonplanar microfluidic chip; (2) Multiple manufacturing processes would be used to crate nonplanar microfluidic chip in this article, including 3D printing technique, solvent polish system, two step dissolution technique and PDMS casting. This study can create fully transparent, nonplanar PDMS microfluidic chip for more application field like biology and medical; (3) Sonication-assisted dissolution technique which is a major technique of this study can help us to fabricate nonplanar microfluidic chip; (4) With this technique, truly three-dimensional, transparent, and more complicated microfluidic platforms can be created such as artificial organs, human tissue, and vascular vessels, and used for more in-vitro experiments.

    摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 XI 表目錄 XVI 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3研究方法 7 1.4論文架構 8 第二章 文獻回顧 11 2.1三維度微流道製程相關文獻 11 2.1.1 組合式製程技術 12 2.1.2直接製作技術 17 2.1.3 溶解製程技術 21 2.1.4 其他特殊技術 23 2.1.5 製程困難及解決 26 第三章 3D列印製程 28 3.1 3D列印簡介 28 3.2 3D列印機之操作使用方式 29 3.3列印參數之設定值 31 3.3.1填充密度設定 32 3.3.2支撐材設定 34 3.3.3翹曲問題 35 3.4非平面流道結構之模具設計與製造 38 3.4.1 一分八非平面模具設計 38 3.4.2 單一入口之樹狀模具設計 40 3.4.3 螺旋型混流器模具設計 43 3.4.4 複雜交錯血管模具設計 45 第四章 三維度全透明非平面流道製程 48 4.1三維度全透明非平面流道製程 48 4.1.1 非平面模具表面拋光製程 51 4.1.2 三維度全透明非平面PDMS流道結構製作方法 52 4.1.3 非平面模具溶解製程 54 第五章 實驗設備與研究方法 56 5.1研究設備 56 5.2研究方法 58 5.2.13D列印製程參數對表面拋光之影響 58 5.2.2自製表面拋光系統之參數測試及PDMS透明度測試 61 5.2.3出入口的設計對溶解效果之測試 62 5.2.4超音波輔助溶解對非平面模具的溶解效果 65 第六章 實驗結果與討論 67 6.13D列印製程參數對表面拋光之影響 67 6.2自製表面拋光系統之參數測試 68 6.3出入口的設計對溶解效果之測試 72 6.4超音波輔助溶解對非平面模具的溶解效果 75 第七章 結論與未來展望 78 7.1結論 78 7.2未來展望 84 參考文獻 86 附錄A 表面粗度計規格表 94 附錄B 非平面模具尺寸之拋光前後量測 95

    [1] S.C. Terry, J.H. Jerman, J.B. Angell, “A gas chromatographic air analyzer fabricated on a silicon wafer,” IEEE Trans. Electron Devices , vol. 26, pp. 1880-1886, 1979.
    [2] C. T. Wittwer, G. C. Fillmore, D.J. Garling, “Minimizing the time required for DNA amplification by efficient heat transfer to small sample,” Analytical Biochemistry 186, pp. 328-331, 1990.
    [3] C. T. Wittwer, D. J. Garling, "Rapid cycle DNA amplification: time and temperature optimization," BioTechniques 10, pp. 76–83, 1991.
    [4] H.P. Chou, M.A. Unger, S.R. Quake, “A Microfabricated Rotary Pump,” Biomedical Microdevices, vol. 3:4, pp. 323-330, 2001.
    [5] G. M. Whitesides, "The origins and the future of microfluidics," Nature 442, pp. 368-373, 2006.
    [6] N. Xiang, H. Yi, K. Chen et al., “Investigation of the maskless lithography technique for the rapid and cost-effective prototyping of microfluidic devices in laboratories,” J. Micromech. Microeng. 2013, 23(2), 025016.
    [7] Y. He, J. Z. Fu, Z. C. Chen, “Research on optimization of the hot embossing process,” J. Micromech. Microeng. 2007, 17(12), 2420.
    [8] U. M. Attia, S. Marson, J. R. Alcock, “Micro-injection moulding of polymer microfluidic devices,” Microfluidics and Nanofluidics, 2009, 7(1), 1–28.
    [9] Torii, R., Oshima, M., Kobayashi, T., Takagi, K., & Tezduyar, T. E. (2009). Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Computer Methods in Applied Mechanics and Engineering, 198(45), 3613-3621, 2009.
    [10] http://www.medindia.net/patients/patientinfo/aneurysm.htm
    [11] http://smallartery.eu/
    [12] Xiangdong Xue, Silvia Marson, Mayur K Patel, Usama M Attia, Chris Bailey, William O’Neill, David Topham, Marc P.Y. Desmulliez, “Biofluid Behaviour in 3D Microchannel Systems: NumericalAnalysis and Design Development of 3D Microchannel Biochip Separators,” Electronic Components and Technology Conference, 2010.
    [13] Yang Liao, Jiangxin Song, En Li, Yong Luo, Yinglong Shen, Danping Chen, Ya Cheng, Zhizhan Xu, Koji Sugioka, Katsumi Midorikawa, “Rapid prototyping og three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12, 746-749, 2012.
    [14] Daniel T. Chiu, Noo Li Jeon, Sui Huang, Ravi S. Kane, Christopher J. Wargo, Insung S. Choi, Donald E. Ingber, George M. Whitesides, “Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems,” PNAS, 97(6), 2413, March 14, 2000.
    [15] Manjot Singh, Yuxin Tong, Kelly Webster, Ellen Cesewski, Alexander P. Haring, Sahil Laheri, Bill Carswell, Timothy J. O'Brien, Charles H. Aardema Jr.,e Ryan S. Senger,fh John L. Robertson and Blake N. Johnson, “3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs,” Lab Chip, 2017, 17, 2561.
    [16] Daniel Lim, Yoko Kamotani, Brenda Cho, Jyotirmoy Mazumder, Shuichi Takayama, “Fabrication og microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip 3, 318-323, 2003.
    [17] Jing-Liang Li, Daniel Day, Min Gu, “Design of a compact microfluidic device for controllable cell distribution,” Lab Chip 10, 3054-3057, 2010.
    [18] Andres J. Calderon, Yun Seok Heo, Dongeun Huh, Nobuyuki Futai, Shuichi Takayama, J.Brian Fowlkes, Joseph L. Bull, “Microfluidic model on bubble lodging in microvessel bifurcations,” APPLIED PHYSICS LETTERS 89, 244103, 2006.
    [19] Dong S. Zhao, Binayak Roy, Matthew T. McCormick, Werner G. Kuhr, Sara A. Brazill, “Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision maching,” Lab Chip 3, 93-99, 2003.
    [20] Mary E. Wilson, Nithyanand Kota, YongTae Kim, Yadong Wang, Donna B. Stolz, Philip R. LeDuc, O.Burak Ozdoganlar, “Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography,” Lab Chip 11, 1550-1555, 2011.
    [21] Daniel Lim, Yoko Kamotani, Brenda Cho, Jyotirmoy Mazumder, Shuichi Takayama, “Fabrication og microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip 3, 318-323, 2003.
    [22] Krzyszof Cieslicki, Adam Piechna, “Investigations of mixing process in microfluidic manifold designed according to biomimetic rule,” Lab Chip 9, 726-732, 2009.
    [23] Yong He, Yan Wu, Jian-zhong Fu, Qing Gao and Jing-jiang Qiu, “Developments of 3D Printing Microfluidics andApplications in Chemistry and Biology: a Review,” ELECTROANALYSIS, 28 April 2016.
    [24] Y. Oppliger, P. Sixt, J.M. Stauffer, J.M. Mayor, P. Regnault, G. Voirin, “One-step 3D Shaping Using a Gray-Tone Mask for Optical and Microelectronic Applications,” Microelectronic Engineering 23, 449-454, 1994.
    [25] Byung-Ho Jo, Linda M. Van Lerberghe, Kathleen M. Motsegood, David J.Beebe, Member, IEEE, “Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer,” Journal Of Microelectromechanical System, vol. 9, March 2000.
    [26] Janelle R. Anderson, Daniel T. Chiu, Rebecca J. Jackman, Oksana Cherniavskaya, J. Cooper MxDonald, Hongkai Wu, Sue H. Whitesides, George M. Whitesides, “Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping,” Anal. Chem72, 3158-3164, 2000.
    [27] Yiqi Luo and Richard N. Zare, “Perforated membrane method for fabricating three-dimensional polydimethylsiloxane microfluidic devices,” Lab Chip, 2008,8, 1688-1694.
    [28] Mengying Zhang, Jinbo Wu, Limu Wang, Kang Xiao, Weijia Wen, “A simple method for fabricatinh multi-layer PDMS structures for 3D microfluidic chips,” Lab Chip 10, 1199-1203, 2010.
    [29] Yan He, Bai-Ling Huang, Dong-Xiao Lu, Jia Zhao, Bin-Bin Xu, Ran Zhang, Xiao-Feng Lin,Qi-Dai Chen, Juan Wang, Yong-Lai Zhang and Hong-Bo Sun,“"Overpass" at the junction of a crossed microchannel: an enabler for 3D microfluidic chips,” Lab Chip.2012 Oct 21;12(20):3866-9.
    [30] Casey C.Glick, Mitchell T. Srimongkol, Aaron J. Schwartz, William S. Zhuang, Joseph C. Lin, Roseanne H. Warren, Dennis R. Tekell, Panitan A. Satamalee, Liwei Lin, “Rapid assembly of multilater microfluidic structures via 3D-printed transfer molding and bonding,” Microsystems & Nanoengineering 2, 16063, 2016.
    [31] Pedro F. Costa, Hugo J. Albers, John E. A. Linssen, Heleen H. T. Middelkamp, Linda van der Hout, Robert Passier, Albert van den Berg, Jos Malda and Andries D. van der Meer, “ Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data,” Lab Chip, 2017, 17, 2785.
    [32] Bauerle, Dieter W, “Laser Processing and Chemistry,” 2011.
    [33] 鄭中緯,飛秒雷射之精微加工技術.,機械工業雜誌,2013年2月號
    [34] 李銘峰,許芳文,吳秉翰,蘇信嘉,曹宏熙,胡杰,利用飛秒雷射微奈米加工技術於波片上製作高深寬比之微流道結構,Journal of Science and Engineering Technology, 5(4), pp. 49-55, 2009.
    [35] Hiroki Ota , Sam Emaminejad , Yuji Gao , Allan Zhao , Eric Wu , Samyuktha Challa ,Kevin Chen , Hossain M. Fahad , Amit K. Jha , Daisuke Kiriya , Wei Gao , Hiroshi Shiraki ,Kazuhito Morioka , Adam R. Ferguson , Kevin E. Healy , Ronald W. Davis , and Ali Javey, “Application of 3D Printing for Smart Objects with Embedded Electronic Sensors and Systems,” Advanced Materials Technologies, 02 March 2016.
    [36] Andrew J. Capel, Steve Edmondson, Steven D. R. Christie, Ruth D. Goodridge, Richard J. Bibb and Matthew Thurstans, “Design and additive manufacture for flow chemistry,” Lab Chip, 2013, 13, 4583.
    [37] Anthony K. Au, Wilson Huynh, Lisa F. Horowitz, and Albert Folch, “ 3D-Printed Microfluidics,” Angewandte Chemie International Edition, Volume 55, Issue 12 March 14, 2016 Pages 3862–3881.
    [38] Arnaud Bertsch, Stephan Heimgartner, Peter Cousseau and Philippe Renaud, “Static micromixers based on large-scale industrial mixer geometry,” Lab Chip. 2001 Sep;1(1):56-60
    [39] Yongha Hwang, Omeed H. Paydar, Robert N. Candler, “3D printer molds for non-planar PDMS microfluidic channels,” Elsevier B.V. All rights, 0924-4247, 2015.
    [40] Ho Nam Chan, Yangfan Chen, Yiwei Shu, Yin Chen, Qian Tian, Hongkai Wu, “Direct, one-step molding of 3S-printed structures for convenient fabrication of truly 3D PDMS microfluidic chip,” Microfluid Nanofluid, 19:9-18, 2015.
    [41] N. Xiang, H. Yi, K. Chen et al., “Investigation of the maskless lithography technique for the rapid and cost-effective prototyping of microfluidic devices in laboratories,” J. Micromech. Microeng. 2013, 23(2), 025016.
    [42] Hujun Wang, Jinghua Liu, Xu Zheng, Xiaohui Rong, Xuwei Zheng, Hongyu Peng, Zhanghua Silber-Li, Mujun Li1 & Liyu Liu,“ Three-dimensional virtual surgery models for percutaneous coronary intervention (PCI) optimization strategies,” Sci Rep.2015 Jun 4;5:10945.
    [43] Tim Femmer , Alexander J.C .Kuehne, José Torres-Rendon, Andreas Walther, Matthias Wessling, “ Print your membrane: Rapid prototyping of complex 3D-PDMS membranes via a sacrificial resist,” Journal of Membrane Science, Volume 478,15 March 2015, Pages 12-18.
    [44] Homgkai Wu, Teri W. Odom, Daniel T. Chiu, George M. Whitesides, “Fabrication of Complex Three-Dimensional Microchannel Systems in PDMS,” J.AM.CHEM.SOC. 125, 554-559, 2003.
    [45] Mohan K. S. Verma, Abhijit Majumder, Animangsu Ghatak, “Embedded Template-Assisted Fabrication of Complex Microchannels in PDMS and Design of a Microfluidic Adhesive,” Langmuir , 22(24), 2006.
    [46] Jiwon Lee, Jungwook Paek and Jaeyoun Kim,“ Sucrose-based fabrication of 3D-networked, cylindrical microfluidic channels for rapid prototyping of lab-on-a-chip and vaso-mimetic devices,” Lab Chip, 2012, 12, 2638–3642.
    [47] Takahiro Odera, Hirotada Hirama, Jo Kuroda, Hiroyuki Moriguchi, Toru Torii, “Droplet formation behavior in a microfluidic device fabricated by hydrogel molding,”Microfluidics and Nanofluidics, (2014) 17: 469.
    [48] https://www.techbang.com/posts/18161-3d-printer-technology-talk.
    [49] http://www.opentech.tw/pages/documents/?/intro/C5-2.html.
    [50] Tim Femmer, Ina Flack, and Matthias Wessling, “Additive Manufacturing in Fluid Process Engineering,” Chemie Ingenieur Technik, 12 January 2016.
    [51] K. Zhonga, Y. Gaoa, F. Li, Z. Zhang, N. Luob, “Fabrication of PDMS microlens array by digital maskless grayscale lithography and replica molding technique,” Optik, 125, pp. 2413-2416, 2014.
    [52] C. W. Beh, W. Zhouab, T. H. Wang, “PDMS-glass bonding using grafted polymeric adhesive-alternative process flow for compatibility with patterned biological molecules,” Lab Chip, 12, pp. 4120-4127, 2012.
    [53] 張義彬,利用可調式微流體晶片開發微透鏡陣列,國立台灣科技大學機械工程研究所,2016。
    [54] L. Tang, M. S. Sheu, T. Chu, Y. H. Huang, “Anti-inflammatory properties of triblock siloxane copolymer-blended materials,’’ Biomaterials, 20, pp. 1365-1370, 1999.
    [55] W. M. Choi and O. O. Park, “A soft-imprint technique for direst fabrication of submicron scale patterns using a surface-modified PDMS mold,” Microelectron Engineering, 70, pp. 131-136, 2003.
    [56] D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,’’ Microelectronic Engineering, 2007.
    [57] N. Koo, M. Bender, U. Plachetka, A. Fuchs, T. Wahlbrink, J. Bolten, H. Kurz, “Improved mold fabrication for the definition of high quality nanopatterns by soft UV-Nanoiprint lithography using diluted PDMS material,”Microelectronic Engineering, 84, pp. 904-908, 2007.
    [58] K. Aran, L. A. Sasso, N. Kamdar and J. D. Zahn, “Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices,’’The Royal Society of Chemistry Lab Chip, 10, pp. 548-552, 2010.
    [59] H.-T. Hsieh, V. Lin, J.-L. Hsieh, G. D. J. Su, “Design and fabrication of long focal length microlens arrays,’’Optics Communications 284 , 2011.
    [60] 許淑喬,微透鏡翻製製製作研究與分析,明新科技大學化學工程與材料科技研究所,2011。

    QR CODE