簡易檢索 / 詳目顯示

研究生: 王予均
Yu-Chun Wang
論文名稱: 開發具生物相容性、高彈性與壓電性之3D列印光固化樹脂
Development of Biocompatible, Flexible and Piezoelectric Photo-Resin for 3D Printing
指導教授: 何明樺
Ming-Hua Ho
口試委員: 陳崇賢
Chorng-Shyan Chern
高震宇
Chen-Yu Kao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 190
中文關鍵詞: 3D列印光固化樹脂生物相容性樹脂壓電性樹脂高彈性樹脂
外文關鍵詞: digital light processing (DLP), photopolymer, 3-dimensional printing, flexibility
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 XI 表目錄 XX 方程式目錄 XXII 專有名詞縮寫 XXIII 第一章 緒論 1 第二章 文獻回顧 3 2.1 積層製造技術介紹 3 2.1.1 積層製造於生醫領域應用優勢 3 2.1.2 積層製造技術分類 4 2.2 光聚合固化技術介紹 7 2.2.1 光固化系統成型機制 7 2.2.2 光固化聚合技術應用機台介紹 8 2.3 光固化樹脂的主要成分 10 2.3.1 寡聚體 11 2.3.2 反應型稀釋劑單體 14 2.3.3 光起始劑 16 2.3.4 功能性添加劑 18 2.4 調控光固化樹脂機械性質之參數 19 2.4.1 玻璃轉移溫度對機械性質之影響 20 2.4.2 分子鏈中交聯密度對材料機械性質之影響 22 2.4.3 微結構軟/硬端比例對機械性質之影響 23 2.5 壓電性光固化複合材料介紹 24 2.5.1 PVDF壓電特性介紹 25 3 第三章 實驗材料與方法 27 3.1 實驗藥品 27 3.2 實驗儀器 29 3.3 實驗步驟 31 3.3.1 光反應型寡聚體的改質 32 3.3.2 光固化樹脂配方系統 32 3.4 光固化材料鑑定與性質檢測 33 3.4.1 黏度測試 33 3.4.2 拉伸試驗 33 3.4.3 靜態降解重量損失測試 35 3.4.4 傅立葉轉換紅外線光譜儀(FTIR)分析 36 3.4.5 多功能固體密度測量儀 37 3.4.6 耐磨耗試驗分析 38 3.4.7 耐候試驗測試 39 3.5 結構孔洞化與壓縮變形量檢測 40 3.5.1 壓縮測試 40 3.5.2 孔洞結構列印參數調整 41 3.6 含石墨烯之光固化型薄膜分散性與壓電性質分析 42 3.6.1 高功率X光繞射儀(XRD)分析 42 3.6.2 壓電訊號反覆敲擊試驗 42 3.6.3 百格測試接面附著度 42 3.7 體外細胞測試 44 3.7.1 光固化材料試片製作 44 3.7.2 生物相容性檢測方式與操作 44 3.7.3 細胞來源 46 3.7.4 細胞培養 47 3.7.5 細胞冷凍保存 48 3.7.6 細胞解凍及培養 48 3.7.7 細胞計數 49 3.7.8 粒線體活性測試 51 4 第四章 結果與討論 54 4.1 光固化樹脂流變性質分析 54 4.1.1 反應型稀釋劑對樹脂流變性之影響 54 4.1.2 溫度對不同寡聚體的流變性之影響 57 4.2 樹脂的配方設計與機械性質調控 59 4.2.1 聚合物結構對機械性質影響 59 4.2.2 聚合物分子量對機械性質影響 63 4.2.3 稀釋單體玻璃轉移溫度對機械性質影響 65 4.2.4 循環拉伸試驗測定回復性 76 4.2.5 機械漸進性質的光固化樹脂系統調控 78 4.2.6 固化時間對機械性質影響 81 4.2.7 光固化樹脂表面硬度 84 4.3 材料的體積收縮率與列印精準度分析 86 4.3.1 稀釋單體結構和體積收縮率的相關性 86 4.3.2 無機粒子添加劑對體積收縮率的影響 90 4.4 材料的孔洞輕量化與變形量分析 95 4.4.1 聚合物機械性質與壓縮應變關係 95 4.4.2 材料孔隙率對與壓縮性質影響 97 4.5 傅立葉轉換紅外光譜儀轉化率分析 100 4.5.1 稀釋單體對轉化率的影響 101 4.5.2 寡聚體分子結構對轉化率之影響 105 4.6 光固化樹脂材料親疏水性分析 110 4.6.1 反應型稀釋劑化學結構對親疏水性影響 110 4.6.2 寡聚體化學結構對親疏水性影響 113 4.7 聚合物的降解性質 115 4.7.1 寡聚體不同化學結構的降解性質 116 4.7.2 不同單體稀釋劑的降解性質 118 4.7.3 光固化樹脂老化機械性質測試 120 4.7.4 光固化樹脂耐磨性質測試 124 4.8 含石墨烯之柔性3D列印複合材料 127 4.8.1 石墨烯於樹脂中流變性質比較 127 4.8.2 含石墨烯之光固化型薄膜之XRD結晶型態分析 128 4.8.3 界面整合百格測試 131 4.8.4 壓電層於不同衝量下的電訊號質比較 133 4.9 材料生物性質檢測 135 4.9.1 寡聚體化學結構對生物相容性的影響 136 4.9.2 反應型單體對生物相容性之影響 137 4.9.3 壓電性光固化樹脂生物相容性檢測 140 4.10 光固化樹脂商業化應用 142 第五章 結論 143 參考文獻 145

    1. Ligon, S.C., R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing” Chem. Rev.; 2017; 117: 10212-10290.
    2. McMenamin, P.G., M.R. Quayle, C.R. McHenry, and J.W. Adams, “The Production of Anatomical Teaching Resources Using Three-Dimensional (3D) Printing Technology” Anat. Sci. Educ.; 2014; 7: 479-486.
    3. Hung, C.C., Y.T. Li, Y.C. Chou, J.E. Chen, C.C. Wu, H.C. Shen, and T.T. Yeh, “Conventional plate fixation method versus pre-operative virtual simulation and three-dimensional printing-assisted contoured plate fixation method in the treatment of anterior pelvic ring fracture” International orthopaedics; 2019; 43: 425-431.
    4. Roseti, L., V. Parisi, M. Petretta, C. Cavallo, G. Desando, I. Bartolotti, and B. Grigolo, “Scaffolds for Bone Tissue Engineering: State of the art and new perspectives” Mater. Sci. Eng. C-Mater. Biol. Appl.; 2017; 78: 1246-1262.
    5. Jiang, Y.H. and Q.M. Wang, “Highly-stretchable 3D-architected Mechanical Metamaterials” Sci Rep; 2016; 6: 11-11.
    6. Schuster, M., C. Turecek, B. Kaiser, J. Stampfl, R. Liska, and F. Varga, “Evaluation of biocompatible photopolymers I: Photoreactivity and mechanical properties of reactive diluents” J. Macromol. Sci. Part A-Pure Appl. Chem.; 2007; 44: 547-557.
    7. Athanasiou, K.A., J.P. Schmitz, and C.M. Agrawal, “The effects of porosity on in vitro degradation of polylactic acid polyglycolic acid implants used in repair of articular cartilage” Tissue Eng.; 1998; 4: 53-63.
    8. Anderson, J.M. and M.S. Shive, “Biodegradation and biocompatibility of PLA and PLGA microspheres” Adv. Drug Deliv. Rev.; 2012; 64: 72-82.
    9. Lam, C.X.F., D.W. Hutmacher, J.T. Schantz, M.A. Woodruff, and S.H. Teoh, “Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo” J. Biomed. Mater. Res. Part A; 2009; 90A: 906-919.
    10. Morrison, R.J., S.J. Hollister, M.F. Niedner, M.G. Mahani, A.H. Park, D.K. Mehta, R.G. Ohye, and G.E. Greer, “Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients” Sci. Transl. Med.; 2015; 7: 11-11.
    11. Lee, J.Y., J. An, and C.K. Chua, “Fundamentals and applications of 3D printing for novel materials” Appl. Mater. Today; 2017; 7: 120-133.
    12. Turner, B.N. and S.A. Gold, “A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness” Rapid Prototyping J.; 2015; 21: 250-261.
    13. Leben, L.M., J.J. Schwartz, A.J. Boydston, R.J. D'Mello, and A.M. Waas, “Optimized heterogeneous plates with holes using 3D printing via vat photo-polymerization” Addit. Manuf.; 2018; 24: 210-216.
    14. Gaynor, A.T., N.A. Meisel, C.B. Williams, and J.K. Guest, “Multiple-Material Topology Optimization of Compliant Mechanisms Created Via PolyJet Three-Dimensional Printing” J. Manuf. Sci. Eng.-Trans. ASME; 2014; 136: 10-10.
    15. Hong, D.H., D.T. Chou, O.I. Velikokhatnyi, A. Roy, B. Lee, I. Swink, I. Issaev, H.A. Kuhn, and P.N. Kumta, “Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys” Acta Biomater.; 2016; 45: 375-386.
    16. Obikawa, T., M. Yoshino, and J. Shinozuka, “Sheet steel lamination for rapid manufacturing” J. Mater. Process. Technol.; 1999; 90: 171-176.
    17. Khairallah, S.A., A.T. Anderson, A. Rubenchik, and W.E. King, “Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones” Acta Mater.; 2016; 108: 36-45.
    18. Carroll, B.E., T.A. Palmer, and A.M. Beese, “Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing” Acta Mater.; 2015; 87: 309-320.
    19. Gross, B.C., J.L. Erkal, S.Y. Lockwood, C.P. Chen, and D.M. Spence, “Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences” Anal. Chem.; 2014; 86: 3240-3253.
    20. Chan, V., P. Zorlutuna, J.H. Jeong, H. Kong, and R. Bashir, “Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation” Lab on a Chip; 2010; 10: 2062-2070.
    21. Cooke, M.N., J.P. Fisher, D. Dean, C. Rimnac, and A.G. Mikos, “Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth” J Biomed Mater Res Part B Appl Biomater; 2003; 64B: 65-69.
    22. Melchels, F.P.W., J. Feijen, and D.W. Grijpma, “A review on stereolithography and its applications in biomedical engineering” Biomaterials; 2010; 31: 6121-6130.
    23. de Gans, B.J., P.C. Duineveld, and U.S. Schubert, “Inkjet printing of polymers: State of the art and future developments” Adv. Mater.; 2004; 16: 203-213.
    24. Bhattacharjee, N., A. Urrios, S. Kanga, and A. Folch, “The upcoming 3D-printing revolution in microfluidics” Lab on a Chip; 2016; 16: 1720-1742.
    25. Benfarhi, S., C. Decker, L. Keller, and K. Zahouily, “Synthesis of clay nanocomposite materials by light-induced crosslinking polymerization” Eur. Polym. J.; 2004; 40: 493-501.
    26. Kannurpatti, A.R., J.W. Anseth, and C.N. Bowman, “A study of the evolution of mechanical properties and structural heterogeneity of polymer networks formed by photopolymerizations of multifunctional (meth)acrylates” Polymer; 1998; 39: 2507-2513.
    27. Truby, R.L. and J.A. Lewis, “Printing soft matter in three dimensions” Nature; 2016; 540: 371-378.
    28. Gleeson, M.R., S. Liu, J.X. Guo, and J.T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary radical generation and inhibition” J. Opt. Soc. Am. B-Opt. Phys.; 2010; 27: 1804-1812.
    29. Gleeson, M.R., S. Liu, S. O'Duill, and J.T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials” J. Appl. Phys.; 2008; 104: 8-8.
    30. Goodner, M.D., H.R. Lee, and C.N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homopolymerizations” Ind. Eng. Chem. Res.; 1997; 36: 1247-1252.
    31. Bamford, C.H., A.D. Jenkins, and R. Johnston, “Termination by primary radicals in vinyl polymerization” Transactions of the Faraday Society; 1959; 55: 1451-1460.
    32. Gleeson, M.R., S. Liu, R.R. McLeod, and J.T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation” J. Opt. Soc. Am. B-Opt. Phys.; 2009; 26: 1746-1754.
    33. formlabs.com, The Ultimate Guide to Stereolithography (SLA) 3D Printing. 2017,march. 8-8.
    34. Kauffmann, H.F., “Mechanism of the photo-polymerization of styrene .1.deactivation of electronically excited styrene by chemical concentration quenching processes - photo-oligomers and photopolymers” Makromolekulare Chemie-Macromolecular Chemistry and Physics; 1979; 180: 2649-2663.
    35. Zheng, X., J. Deotte, M.P. Alonso, G.R. Farquar, T.H. Weisgraber, S. Gemberling, H. Lee, N. Fang, and C.M. Spadaccini, “Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system” The Review of scientific instruments; 2012; 83: 125001-125002.
    36. He, R.X., W. Liu, Z.W. Wu, D. An, M.P. Huang, H.D. Wu, Q.G. Jiang, X.R. Ji, S.H. Wu, and Z.P. Xie, “Fabrication of complex-shaped zirconia ceramic parts via a DLP-stereolithography-based 3D printing method” Ceram. Int.; 2018; 44: 3412-3416.
    37. Antonov, E.N., V.N. Bagratashvili, M.J. Whitaker, J.J.A. Barry, K.M. Shakesheff, A.N. Konovalov, V.K. Popov, and S.M. Howdle, “Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering” Adv. Mater.; 2005; 17: 327-327.
    38. Patel, D.K., A.H. Sakhaei, M. Layani, B. Zhang, Q. Ge, and S. Magdassi, “Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing” Adv. Mater.; 2017; 29: 7-7.
    39. Sun, C., N. Fang, D.M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask” Sens. Actuator A-Phys; 2005; 121: 113-120.
    40. Ge, L.S., L.T. Dong, D. Wang, Q. Ge, and G.Y. Gu, “A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators” Sens. Actuator A-Phys.; 2018; 273: 285-292.
    41. Nguyen, L.H., M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications” Adv. Funct. Mater.; 2005; 15: 209-216.
    42. Yen, M.S., C.N. Huang, and P.D. Hong, “Synthesis and characteristics of aqueous reactive urethane oligomer containing sulfoisophthalate sodium salt” J. Appl. Polym. Sci.; 2007; 106: 2907-2916.
    43. Cheng, J.Y., M.L. Li, Y. Cao, Y.J. Gao, J.C. Liu, and F. Sun, “Synthesis and properties of photopolymerizable bifunctional polyether-modified polysiloxane polyurethane acrylate prepolymer” J. Adhes. Sci. Technol.; 2016; 30: 2-12.
    44. Park, Y.J., D.H. Lim, H.J. Kim, D.S. Park, and I.K. Sung, “UV- and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers” Int. J. Adhes. Adhes.; 2009; 29: 710-717.
    45. Xu, H.P., F.X. Qiu, Y.Y. Wang, W.L. Wu, D.Y. Yang, and Q. Guo, “UV-curable waterborne polyurethane-acrylate: preparation, characterization and properties” Progress in Organic Coatings; 2012; 73: 47-53.
    46. Kim, D.S. and W.H. Seo, “Ultraviolet-curing behavior and mechanical properties of a polyester acrylate resin” J. Appl. Polym. Sci.; 2004; 92: 3921-3928.
    47. Badev, A., Y. Abouliatim, T. Chartier, L. Lecamp, P. Lebaudy, C. Chaput, and C. Delage, “Photopolymerization kinetics of a polyether acrylate in the presence of ceramic fillers used in stereolithography” J. Photochem. Photobiol. A-Chem.; 2011; 222: 117-122.
    48. Decker, C., K. Moussa, and T. Bendaikha, “Phototodegradation of UV-cures coatings .2. polyurethane acrylate networks” J. Polym. Sci. Pol. Chem.; 1991; 29: 739-747.
    49. Egger, N., K. Schmidt-Rohr, B. Blumich, W.D. Domke, and B. Stapp, “Sold-state NMR investigation of cationic polymerized Eposy-resins” J. Appl. Polym. Sci.; 1992; 44: 289-295.
    50. Si, L.Q., X.W. Zheng, J. Nie, R.X. Yin, Y.J. Hua, and X.Q. Zhu, “Silicone-based tough hydrogels with high resilience, fast self-recovery, and self-healing properties” Chem. Commun.; 2016; 52: 8365-8368.
    51. Schwalm, R., CHAPTER 6 - Structure–Property Relationships, in UV Coatings, R. Schwalm, Editor. 2007, Elsevier: Amsterdam. p. 160-178.
    52. Li, C.G., J. Cheng, W.K. Chang, and J. Nie, “Photopolymerization kinetics and properties of a trifunctional epoxy acrylate” Des. Monomers Polym.; 2013; 16: 274-282.
    53. Zheng, X.Y., H. Lee, T.H. Weisgraber, M. Shusteff, J. DeOtte, E.B. Duoss, J.D. Kuntz, M.M. Biener, Q. Ge, J.A. Jackson, S.O. Kucheyev, N.X. Fang, and C.M. Spadaccini, “Ultralight, Ultrastiff Mechanical Metamaterials” Science; 2014; 344: 1373-1377.
    54. Tathe, D.S. and R.N. Jagtap, “Biobased reactive diluent for UV-curable urethane acrylate oligomers for wood coating” J. Coat. Technol. Res.; 2015; 12: 187-196.
    55. Hu, Y., Q.Q. Shang, J.J. Tang, C.N. Wang, F. Zhang, P.Y. Jia, G.D. Feng, Q. Wu, C.G. Liu, L.H. Hu, W. Lei, and Y.H. Zhou, “Use of cardanol-based acrylate as reactive diluent in UV-curable castor oil-based polyurethane acrylate resins” Ind. Crop. Prod.; 2018; 117: 295-302.
    56. Oguri, M., Y. Yoshida, K. Yoshihara, T. Miyauchi, Y. Nakamura, S. Shimoda, M. Hanabusa, Y. Momoi, and B. Van Meerbeek, “Effects of functional monomers and photo-initiators on the degree of conversion of a dental adhesive” Acta Biomater.; 2012; 8: 1928-1934.
    57. Kilambi, H., S.K. Reddy, L. Schneidewind, T.Y. Lee, J.W. Stansbury, and C.N. Bowman, “Design, development, and evaluation of monovinyl acrylates characterized by secondary functionalities as reactive diluents to diacrylates” Macromolecules; 2007; 40: 6112-6118.
    58. Wang, X.J. and M.D. Soucek, “Investigation of non-isocyanate urethane dimethacrylate reactive diluents for UV-curable polyurethane coatings” Progress in Organic Coatings; 2013; 76: 1057-1067.
    59. Thrasher, C.J., J.J. Schwartz, and A.J. Boydston, “Modular Elastomer Photoresins for Digital Light Processing Additive Manufacturing” ACS Applied Materials & Interfaces; 2017; 9: 39708-39716.
    60. Arcis, R.W., A. Lopez-Macipe, M. Toledano, E. Osorio, R. Rodriguez-Clemente, J. Murtra, M.A. Fanovich, and C.D. Pascual, “Mechanical properties of visible light-cured resins reinforced with hydroxyapatite for dental restoration” Dental materials : official publication of the Academy of Dental Materials; 2002; 18: 49-57.
    61. Wang, F., J. Hu, and W. Tu, “Study on microstructure of UV-curable polyurethane acrylate films” Progress in Organic Coatings - prog prg coating; 2008; 62: 245-250.
    62. Guo, Y.X., Z.Y. Ji, Y. Zhang, X.L. Wang, and F. Zhou, “Solvent-free and photocurable polyimide inks for 3D printing” J. Mater. Chem. A; 2017; 5: 16307-16314.
    63. Yildiz, E., H. Guclu, H. Yildirim, A. Kuyulu, and A. Gungor, “Effects of reactive diluents on mechanical and physical-properties-properties of a UV curable acrylayed urethane prepolymer” Angew. Makromol. Chem.; 1995; 230: 105-115.
    64. Lin, H.Q., T. Kai, B.D. Freeman, S. Kalakkunnath, and D.S. Kalika, “The effect of cross-linking on gas permeability in cross-linked poly(ethylene glycol diacrylate)” Macromolecules; 2005; 38: 8381-8393.
    65. Hong, J.W., H.K. Kim, J.A. Yu, and Y.B. Kim, “Characterization of UV-curable reactive diluent containing quaternary ammonium salts for antistatic coating” J. Appl. Polym. Sci.; 2002; 84: 132-137.
    66. Phalak, G., D. Patil, V. Vignesh, and S. Mhaske, “Development of tri-functional biobased reactive diluent from ricinoleic acid for UV curable coating application” Ind. Crop. Prod.; 2018; 119: 9-21.
    67. Palanisamy, A., “Photo-DSC and dynamic mechanical studies on UV curable compositions containing diacrylate of ricinoleic acid amide derived from castor oil” Progress in Organic Coatings; 2007; 60: 161-169.
    68. Oprea, S. and D. Tomer, “Acrylic monomers with functional groups” Mater. Plast.; 1999; 36: 241-252.
    69. Emami, N. and K.J.M. Soderholm, “Influence of light-curing procedures and photo-initiator/co-initiator composition on the degree of conversion of light-curing resins” J. Mater. Sci.-Mater. Med.; 2005; 16: 47-52.
    70. Gleeson, M.R., D. Sabol, S. Liu, C.E. Close, J.V. Kelly, and J.T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length” J. Opt. Soc. Am. B-Opt. Phys.; 2008; 25: 396-406.
    71. Decker, C., “Photoinitiated curing of multifunctional monomers” Acta Polym.; 1994; 45: 333-347.
    72. Crivello, J.V., “A New Visible Light Sensitive Photoinitiator System for the Cationic Polymerization of Epoxides” J. Polym. Sci. Pol. Chem.; 2009; 47: 866-875.
    73. Gleeson, M.R., J.V. Kelly, C.E. Close, F.T. O'Neill, and J.T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials” J. Opt. Soc. Am. B-Opt. Phys.; 2006; 23: 2079-2088.
    74. Kim, J.A., D.G. Seong, T.J. Kang, and J.R. Youn, “Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites” Carbon; 2006; 44: 1898-1905.
    75. Yang, K., M.Y. Gu, Y.P. Guo, X.F. Pan, and G.H. Mu, “Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites” Carbon; 2009; 47: 1723-1737.
    76. Wang, B.C., A.J. Benitez, F. Lossada, R. Merindol, and A. Walther, “Bioinspired Mechanical Gradients in Cellulose Nanofibril/Polymer Nanopapers” Angew. Chem.-Int. Edit.; 2016; 55: 5966-5970.
    77. Cho, J.D., Y.B. Kim, H.T. Ju, and J.W. Hong, “The effects of silica nanoparticles on the photocuring behaviors of UV-curable polyester acrylate-based coating systems” Macromol. Res.; 2005; 13: 362-365.
    78. Ge, Q., A.H. Sakhaei, H. Lee, C.K. Dunn, N.X. Fang, and M.L. Dunn, “Multimaterial 4D Printing with Tailorable Shape Memory Polymers” Sci Rep; 2016; 6: 11-11.
    79. Miezinyte, G., J. Ostrauskaite, E. Rainosalo, E. Skliutas, and M. Malinauskas, “Photoresins based on acrylated epoxidized soybean oil and benzenedithiols for optical 3D printing” Rapid Prototyping J.; 2019; 25: 378-387.
    80. Biliaderis, C.G., A. Lazaridou, and I. Arvanitoyannis, “Glass transition and physical properties of polyol-plasticised pullulan-starch blends at low moisture” Carbohydr. Polym.; 1999; 40: 29-47.
    81. Pillin, I., N. Montrelay, and Y. Grohens, “Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor?” Polymer; 2006; 47: 4676-4682.
    82. Muizebelt, W.J., J.C. Hubert, M.W.F. Nielen, R.P. Klaasen, and K.H. Zabel, “Crosslink mechanisms of high-solids alkyd resins in the presence of reactive diluents” Progress in Organic Coatings; 2000; 40: 121-130.
    83. Duan, J.J., X.C. Liang, J.H. Guo, K.K. Zhu, and L.N. Zhang, “Ultra-Stretchable and Force-Sensitive Hydrogels Reinforced with Chitosan Microspheres Embedded in Polymer Networks” Adv. Mater.; 2016; 28: 8037-8044.
    84. Saldivar-Guerra, E. and E. Vivaldo-Lima, Handbook of polymer synthesis, characterization, and processing. 2013: John Wiley & Sons. chap.9:10-13.
    85. Asif, A. and W.F. Shi, “UV curable waterborne polyurethane acrylate dispersions based on hyperbranched aliphatic polyester: effect of molecular structure on physical and thermal properties” Polym. Adv. Technol.; 2004; 15: 669-675.
    86. Schwalm, R., CHAPTER 4 - Raw Materials, in UV Coatings, R. Schwalm, Editor. 2007, Elsevier: Amsterdam. 94-139.
    87. Bandyopadhyay, A., R.K. Panda, V.E. Janas, M.K. Agarwala, S.C. Danforth, and A. Safari, “Processing of piezocomposites by fused deposition technique” J. Am. Ceram. Soc.; 1997; 80: 1366-1372.
    88. Chorsi, M.T., E.J. Curry, H.T. Chorsi, R. Das, J. Baroody, P.K. Purohit, H. Ilies, and T.D. Nguyen, “Piezoelectric Biomaterials for Sensors and Actuators” Adv. Mater.; 2019; 31: 15-15.
    89. Damaraju, S.M., Y.Y. Shen, E. Elele, B. Khusid, A. Eshghinejad, J.Y. Li, M. Jaffe, and T.L. Arinzeh, “Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation” Biomaterials; 2017; 149: 51-62.
    90. Wang, A.C., Z. Liu, M. Hu, C.C. Wang, X.D. Zhang, B.J. Shi, Y.B. Fan, Y.G. Cui, Z. Li, and K.L. Ren, “Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing” Nano Energy; 2018; 43: 63-71.
    91. Guo, H.F., Z.S. Li, S.W. Dong, W.J. Chen, L. Deng, Y.F. Wang, and D.J. Ying, “Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications” Colloid Surf. B-Biointerfaces; 2012; 96: 29-36.
    92. Boutry, C.M., A. Nguyen, Q.O. Lawal, A. Chortos, S. Rondeau-Gagne, and Z.N. Bao, “A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring” Adv. Mater.; 2015; 27: 6954-6955.
    93. Park, Y.J., Y.S. Kang, and C.M. Park, “Micropatterning of semicrystalline poly(vinylidene fluoride) (PVDF) solutions” Eur. Polym. J.; 2005; 41: 1002-1012.
    94. Gomes, J., J.S. Nunes, V. Sencadas, and S. Lanceros-Mendez, “Influence of the beta-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride)” Smart Mater. Struct.; 2010; 19: 7-7.
    95. Kawai, H., “PIEZOELECTRICITY OF POLY (VINYLIDENE FLUORIDE)” Japanese Journal of Applied Physics; 1969; 8: 975-&.
    96. Benz, M., W.B. Euler, and O.J. Gregory, “The role of solution phase water on the deposition of thin films of poly(vinylidene fluoride)” Macromolecules; 2002; 35: 2682-2688.
    97. Martins, P., C. Costa, and S. Lanceros-Méndez, “Nucleation of electroactive -phase poly(vinilidene fluoride) with CoFe2O4 and NiFe2O4 nanofillers: A new method for the preparation of multiferroic nanocomposites” Applied Physics A; 2010; 103: 233-237.
    98. Chen, T., H.S. Peng, M. Durstock, and L.M. Dai, “High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets” Sci Rep; 2014; 4: 7-7.
    99. Nakamura, K. and Y. Wada, “Pieezoelectricity, pyroelectricity,and electrostriction constant of poly(vintlidene fluoride)” Journal of Polymer Science Part a-2-Polymer Physics; 1971; 9: 161-162.
    100. Jakus, A.E., E.B. Secor, A.L. Rutz, S.W. Jordan, M.C. Hersam, and R.N. Shah, “Three-Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications” ACS Nano; 2015; 9: 4636-4648.
    101. Gao, S., X.Y. Wu, H.B. Ma, J. Robertson, and A. Nathan, “Ultrathin Multifunctional Graphene-PVDF Layers for Multidimensional Touch Interactivity for Flexible Displays” Acs Applied Materials & Interfaces; 2017; 9: 18410-18416.
    102. Mesa-Múnera, E., J. Ramírez-Salazar, P. Boulanger, and J. Branch, “Inverse-FEM Characterization of a Brain Tissue Phantom to Simulate Compression and Indentation” Ingeniería y Ciencia; 2012; 8: 11-36.
    103. Kane, K., J. Jumel, F. Lallet, A. Mbiakop-Ngassa, J.M. Vacherand, and M.E.R. Shanahan, “Experimental study of the rubber cord adhesion inflation test” Eng. Fract. Mech.; 2020; 224: 16-16.
    104. Kaewpirom, S. and D. Kunwong, “Curing behavior and cured film performance of easy-to-clean UV-curable coatings based on hybrid urethane acrylate oligomers” Journal of Polymer Research; 2012; 19-20.
    105. Le Fer, G., Y.Y. Luo, and M.L. Becker, “Poly(propylene fumarate) stars, using architecture to reduce the viscosity of 3D printable resins” Polym. Chem.; 2019; 10: 4655-4664.
    106. Krainer, S., C. Smit, and U. Hirn, “The effect of viscosity and surface tension on inkjet printed picoliter dots” RSC Adv.; 2019; 9: 31708-31719.
    107. Kelley, F.N. and F. Bueche, “Viscosity and glass temperature relations for polymer-diluent systems” Journal of Polymer Science; 1961; 50: 549-556.
    108. Kelbaliyev, G.I., S.R. Rasulov, and G.R. Mustafayeva, “Viscosity of Structured Disperse Systems” Theor. Found. Chem. Eng.; 2018; 52: 404-411.
    109. Penzel, E., J. Rieger, and H.A. Schneider, “The glass transition temperature of random copolymers .1. Experimental data and the Gordon-Taylor equation” Polymer; 1997; 38: 325-337.
    110. Semba, T., K. Kitagawa, U.S. Ishiaku, and H. Hamada, “The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends” J. Appl. Polym. Sci.; 2006; 101: 1816-1825.
    111. Paul, D.R. and L.M. Robeson, “Polymer nanotechnology: Nanocomposites” Polymer; 2008; 49: 3187-3204.
    112. Nemashkalo, A., V. Popov, A. Rubashkin, P. Sorokin, A. Zatserklianiy, A. Borisenko, V. Senchishin, O. Skrebtsov, and V. Bolotov, “Study of tile/fiber systems manufactured from Kharkov injection molded and Kuraray SCSN-81 scintillators” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip.; 1998; 419: 609-611.
    113. Grant, A., S.T. Moncur, and N.A. Caiger, Jet ink and ink jet printing process. 2016, Google Patents.
    114. Kim, W., Y.C. Jeong, and J.-K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage” Appl. Phys. Lett.; 2005; 87: 106-107.
    115. Davidson, C.L. and A.J. Feilzer, “Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives” J. Dent.; 1997; 25: 435-440.
    116. Pianelli, C., J. Devaux, S. Bebelman, and G. Leloup, “The micro-Raman spectroscopy, a useful tool to determine the degree of conversion of light-activated composite resins” J. Biomed. Mater. Res.; 1999; 48: 675-681.
    117. Dewaele, M., D. Truffier-Boutry, J. Devaux, and G. Leloup, “Volume contraction in photocured dental resins: The shrinkage-conversion relationship revisited” Dent. Mater.; 2006; 22: 359-365.
    118. Elias, L., F. Fenouillot, J.C. Majeste, P. Alcouffe, and P. Cassagnau, “Immiscible polymer blends stabilized with nano-silica particles: Rheology and effective interfacial tension” Polymer; 2008; 49: 4378-4385.
    119. Ahn, S.H., S.H. Kim, B.C. Kim, K.B. Shim, and B.G. Cho, “Mechanical properties of silica nanoparticle reinforced poly(ethylene 2, 6-naphthalate)” Macromol. Res.; 2004; 12: 293-302.
    120. Leprince, J., W.M. Palin, T. Mullier, J. Devaux, J. Vreven, and G. Leloup, “Investigating filler morphology and mechanical properties of new low-shrinkage resin composite types” J. Oral Rehabil.; 2010; 37: 364-376.
    121. Park, J.K., G.H. Lee, J.H. Kim, M.G. Park, C.C. Ko, H.I. Kim, and Y.H. Kwon, “Polymerization shrinkage, flexural and compression properties of low-shrinkage dental resin composites” Dent. Mater. J.; 2014; 33: 104-110.
    122. Mishra, D.K. and P.M. Pandey, “Mechanical behaviour of 3D printed ordered pore topological iron scaffold” Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.; 2020; 783: 5-5.
    123. Sideridou, I., V. Tserki, and G. Papanastasiou, “Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins” Biomaterials; 2002; 23: 1819-1829.
    124. Matsumoto, A., “Free-radical crosslinking polymerization and copolymerization of multivinyl compounds” Synthesis and Photosynthesis” ;1995 : 41-80.
    125. Azhar, U., R. Yaqub, H. Li, G. Abbas, Y. Wang, J. Chen, C. Zong, A. Xu, Z. Yabin, S. Zhang, and B. Geng, “Di-block copolymer stabilized methyl methacrylate based polyHIPEs: Influence of hydrophilic and hydrophobic co-monomers on morphology, wettability and thermal properties” Arabian Journal of Chemistry; 2020; 13: 3801-3816.
    126. Zhang, Z.P., X.F. Song, L.Y. Cui, and Y.H. Qi, “Synthesis of Polydimethylsiloxane-Modified Polyurethane and the Structure and Properties of Its Antifouling Coatings” Coatings; 2018; 8: 18-18.
    127. Abenojar, J., R. Torregrosa-Coque, M.A. Martinez, and J.M. Martin-Martinez, “Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma” Surface & Coatings Technology; 2009; 203: 2173-2180.
    128. Seo, J. and L.P. Lee, “Effects on wettability by surfactant accumulation/depletion in bulk polydimethylsiloxane (PDMS)” Sens. Actuator B-Chem.; 2006; 119: 192-198.
    129. Kim, B.S., J.S. Hrkach, and R. Langer, “Biodegradable photo-crosslinked poly(ether-ester) networks for lubricious coatings” Biomaterials; 2000; 21: 259-265.
    130. Mitchell, S.M., J.L. Ullman, A.L. Teel, and R.J. Watts, “pH and temperature effects on the hydrolysis of three beta-lactam antibiotics: Ampicillin, cefalotin and cefoxitin” Sci. Total Environ.; 2014; 466: 547-555.
    131. Lee, K.Y., K.H. Bouhadir, and D.J. Mooney, “Controlled degradation of hydrogels using multi-functional cross-linking molecules” Biomaterials; 2004; 25: 2461-2466.
    132. Sun, J.Y., X.H. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, and Z.G. Suo, “Highly stretchable and tough hydrogels” Nature; 2012; 489: 133-136.
    133. Yang, J., F. Wang, and T.W. Tan, “Degradation Behavior of Hydrogel Based on Cross linked Poly(aspartic acid)” J. Appl. Polym. Sci.; 2010; 117: 178-185.
    134. Yanagihara, Y., N. Osaka, S. Murayama, and H. Saito, “Thermal annealing behavior and structure development of crystalline hard segment domain in a melt-quenched thermoplastic polyurethane” Polymer; 2013; 54: 2183-2189.
    135. Persano, L., C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, and J.A. Rogers, “High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene)” Nature Communications; 2013; 4: 1633.
    136. Aryaei, A., A.H. Jayatissa, and A.C. Jayasuriya, “The effect of graphene substrate on osteoblast cell adhesion and proliferation” J. Biomed. Mater. Res. Part A; 2014; 102: 3282-3290.
    137. Lim, H.N., N.M. Huang, S.S. Lim, I. Harrison, and C.H. Chia, “Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth” Int. J. Nanomed.; 2011; 6: 1817-1823.
    138. Nayak, T.R., H. Andersen, V.S. Makam, C. Khaw, S. Bae, X.F. Xu, P.L.R. Ee, J.H. Ahn, B.H. Hong, G. Pastorin, and B. Ozyilmaz, “Graphene for Controlled and Accelerated Osteogenic Differentiation of Human Mesenchymal Stem Cells” ACS Nano; 2011; 5: 4670-4678.

    無法下載圖示 全文公開日期 2025/08/17 (校內網路)
    全文公開日期 2025/08/17 (校外網路)
    全文公開日期 2025/08/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE