簡易檢索 / 詳目顯示

研究生: 邱泓昱
Hungyu Chiu
論文名稱: 可穩定抓取任意形貌物件的可變構氣動柔性夾爪
A Reconfigurable Pneumatic Soft Gripper for Stable Gripping of Arbitrarily-Shaped Objects
指導教授: 林柏廷
Po-Ting Lin
口試委員: 張敬源
Ching-Yuan Chang
陳羽薰
Yu-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 135
中文關鍵詞: 3D列印柔性夾爪可變構式柔性夾爪最穩定夾取夾爪角度辨識
外文關鍵詞: 3D printing soft gripper, configuration soft gripper, most stable gripping, gripper angle identification
相關次數: 點閱:116下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 柔性夾爪的研發與應用迅速發展,市場上的夾爪的需求越來越高,有別於傳統剛體夾爪設計,柔性夾爪的運動形式更具彈性,且較不易破壞周遭的物體。加上目前的市場上的柔性夾爪的設計大都不具備變構性,為了使柔性夾爪能做出更多動作,以調整抓取姿態或適應物體形貌,本文提出了一種複合材料製成的可變構式柔性夾爪。
    可變構式氣動柔性夾爪以矽膠作為柔性主體,以氣動方式彎曲柔性手指,並在柔性結構體外包覆TPU材質的外骨骼,並參考人類的手指將夾爪劃分為三個指節,使用三個步進馬達帶動三條PE線的拉線方式來改變外骨骼的姿態進而達成夾爪的控制。當各馬達分別帶動不同的PE線時,會以相對應的方式改變柔性手指的剛性分佈,達成不同形式的彎曲變形。
    使用本研究提出的可變構式氣動柔性夾爪進行了一系列的標準化實驗,量測不同氣壓在各種變構方式下的角度變化與壓力變化,進行三種截面物體的夾取實驗,透過量測臨界夾持力與搭配感測器進行訊號分析的方法找出各物體的最穩定夾取模式,實驗結果發現本變構柔性夾爪能夠適應圓形及多邊型等不同形狀物體的抓取,由於柔性手指彎曲的形狀更接近物體的外型,接觸面積較一般柔性夾爪大,故抓取的穩定性更佳。


    The application of soft grippers is developing rapidly nowaday. The soft gripper is elastic and guarantees the safety of its surroundings in comparison to traditional rigid grippers. The commercial soft grippers have no ability to adjust its mechanism. This research proposes soft grippers with a new mechanism made by composite material that provides the ability to adjust the gripper to grip different shapes of objects.
    The pneumatic soft gripper with adjustable mechanism contains a silicon flexible body with TPU covered as its exoskeleton. This research takes human fingers as reference and develops a three-knuckles gripper. This gripper is actuated by three step motors with PE wired connected to the gripper mechanism. The silicon soft finger can perform different formations with the control of the motors and pneumatic.
    This research proposes standardized experiments to evaluate the pressure in the pneumatic gripper at different angles when gripping the experimental object. Moreover, the most stable mechanism for different shapes of objects is tested. In conclusion, the pneumatic soft gripper we proposed has the ability to grip circular and polygon objects and create a larger contact area for the gripper and the gripping object than traditional soft gripper, resulting in a stable gripping.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖索引 VII 表索引 XIII 符號索引 XIV 第一章、緒論 1 1.1 前言與研究動機 1 1.2 論文整體架構介紹 2 第二章、文獻回顧 3 2.1 柔性夾爪 3 2.2 柔性感測器 4 2.3 可變構柔性夾爪 6 2.4 柔性夾爪優化 10 第三章、實驗方法 14 3.1 夾爪柔性體 15 3.1.1 有限元素分析法 17 3.1.2 夾爪柔性體製備 26 3.2 夾爪外骨骼 33 3.2.1 夾爪外骨骼製備 36 3.3 夾爪座 37 3.4 驅動方式 43 3.5 彎曲角度分析 49 3.5.1 影像辨識夾爪角度方法介紹 52 3.5.2 柔性夾爪角度計算 54 3.6 夾爪壓力實驗 56 3.7 最穩定夾取分析 59 3.7.1 水平與垂直方向測量夾持力 59 3.8 變構夾爪搭配感測器訊號量測 61 3.8.1 壓電效應 63 3.8.2 PVDF壓電薄膜感測器製備 64 3.8.3 感測器訊號擷取方法 65 第四章、實驗結果 68 4.1 影像辨識角度實驗結果 68 4.2 夾取壓力測試結果 78 4.3 最穩定夾取分析實驗結果 84 4.3.1 垂直與水平方向夾持力實驗 84 4.3.2 夾取物體訊號分析 87 第五章、結論與未來展望 98 5.1 結論 98 5.2 未來展望 99 參考文獻 100 附錄A、影像辨識角度與座標結果 105 附錄B、不同變構型態夾取力結果 113

    [1] Z. Wang, K. Or, S. Hirai, A dual-mode soft gripper for food packaging, Robotics and Autonomous Systems, 125, 103427, 2020.
    [2] H. Yang, Y. Chen, Y. Sun, L. Hao, A novel pneumatic soft sensor for measuring contact force and curvature of a soft gripper, Sensors and Actuators A: Physical, 266, 318-327, 2017.
    [3] Z. Wang, S. Hirai, A 3D printed soft gripper integrated with curvature sensor for studying soft grasping, 2016 IEEE/SICE International Symposium on System Integration (SII), 629-633, 2016.
    [4] H. Li, J. Yao, C. Wei, P. Zhou, Y. Xu, Y. Zhao, An untethered soft robotic gripper with high payload-to-weight ratio, Mechanism and Machine Theory, 158, 104226, 2021.
    [5] W. Wang, H. Rodrigue, H.-I. Kim, M.-W. Han, S.-H. Ahn, Soft composite hinge actuator and application to compliant robotic gripper, Composites Part B: Engineering, 98, 397-405, 2016.
    [6] P. Jittungboonya, T. Maneewarn, Grasping with a tube-feet inspired soft gripper, 2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), 147-150, 2019.
    [7] Y. Elsayed, A. Vincensi, C. Lekakou, T. Geng, C. Saaj, T. Ranzani, M. Cianchetti, A. Menciassi, Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications, Soft Robotics, 1(4), 255-262, 2014.
    [8] H. Zhang, A. S. Kumar, F. Chen, J. Y. Fuh, M. Y. Wang, Topology optimized multimaterial soft fingers for applications on grippers, rehabilitation, and artificial hands, IEEE/ASME Transactions on Mechatronics, 24(1), 120-131, 2018.
    [9] M. E. Giannaccini, I. Georgilas, I. Horsfield, B. Peiris, A. Lenz, A. G. Pipe, S. Dogramadzi, A variable compliance, soft gripper, Autonomous Robots, 36(1), 93-107, 2014.
    [10] J. R. Amend, E. Brown, N. Rodenberg, H. M. Jaeger, H. Lipson, A positive pressure universal gripper based on the jamming of granular material, IEEE transactions on robotics, 28(2), 341-350, 2012.
    [11] Y. Su, Z. Fang, W. Zhu, X. Sun, Y. Zhu, H. Wang, K. Tang, H. Huang, S. Liu, Z. Wang, A high-payload proprioceptive hybrid robotic gripper with soft origamic actuators, IEEE Robotics and Automation Letters, 5(2), 3003-3010, 2020.
    [12] B. S. Homberg, R. K. Katzschmann, M. R. Dogar, D. Rus, Haptic identification of objects using a modular soft robotic gripper, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1698-1705, 2015.
    [13] N. R. Sinatra, C. B. Teeple, D. M. Vogt, K. K. Parker, D. F. Gruber, R. J. Wood, Ultragentle manipulation of delicate structures using a soft robotic gripper, Science Robotics, 4(33), eaax5425, 2019.
    [14] Smooth-On Ecoflex™ 00-50, URL: https://www.smooth-on.com/products/ecoflex-00-50/.
    [15] Dragon Skin™ 20, URL: https://www.smooth-on.com/products/dragon-skin-20/.
    [16] Silskin 10, URL: https://www.mbfg.co.uk/silskin_10_silicone.html.
    [17] H. G. El Bana, A. Abbas, A Novel Design of the Utilisation of Soft Grippers in Loading and Unloading Applications, 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE), 158-163, 2020.
    [18] Z. Wang, S. Hirai, A soft gripper with adjustable stiffness and variable working length for handling food material, 2018 IEEE International Conference on Real-time Computing and Robotics (RCAR), 25-29, 2018.
    [19] 博高科儀股份有限公司, URL: https://www.prokao.com.tw/product-detail-1445577.html.
    [20] Flashforge 3D Printer, URL: https://www.flashforge.com/product-detail/flashforge-creator-3-fdm-3d-printer.
    [21] 陳韻安, 不同曲率壓電薄膜感測器的力響應之標準量測及其在柔性夾爪之應用, 機械工程系, 國立臺灣科技大學碩博士論文, 2021.
    [22] 聚英電子工業互聯網方案提供商, 2007, URL: https://www.juyingele.com.cn/product/ioModules/AI/910.html.
    [23] 高鹿興業有限公司, URL: https://reurl.cc/vWpbZk.
    [24] 山野, URL: https://reurl.cc/O45aOX.
    [25] Sunstar, URL: http://www.sunstar-tw.com/fishing/goods/powerpro/index.html.
    [26] Y. Haibin, K. Cheng, L. Junfeng, Y. Guilin, Modeling of grasping force for a soft robotic gripper with variable stiffness, Mechanism and Machine Theory, 128, 254-274, 2018.
    [27] T. Sun, Y. Chen, T. Han, C. Jiao, B. Lian, Y. Song, A soft gripper with variable stiffness inspired by pangolin scales, toothed pneumatic actuator and autonomous controller, Robotics and Computer-Integrated Manufacturing, 61, 101848, 2020.
    [28] D. Cardin-Catalan, S. Ceppetelli, A. P. del Pobil, A. Morales, Design and analysis of a variable-stiffness robotic gripper, Alexandria Engineering Journal, 61(2), 1235-1248, 2022.
    [29] G. Zhong, Y. Hou, W. Dou, A soft pneumatic dexterous gripper with convertible grasping modes, International Journal of Mechanical Sciences, 153, 445-456, 2019.
    [30] W. Wang, Y. Tang, C. Li, Controlling bending deformation of a shape memory alloy-based soft planar gripper to grip deformable objects, International Journal of Mechanical Sciences, 193, 106181, 2021.
    [31] H. Rodrigue, W. Wang, D.-R. Kim, S.-H. Ahn, Curved shape memory alloy-based soft actuators and application to soft gripper, Composite Structures, 176, 398-406, 2017.
    [32] A. Müller, M. Aydemir, A. Glodde, F. Dietrich, Design Approach for Heavy-Duty Soft-Robotic-Gripper, Procedia CIRP, 91, 301-305, 2020.
    [33] M. Xie, M. Zhu, Z. Yang, S. Okada, S. Kawamura, Flexible self-powered multifunctional sensor for stiffness-tunable soft robotic gripper by multimaterial 3D printing, Nano Energy, 79, 105438, 2021.
    [34] T. T. Hoang, J. J. S. Quek, M. T. Thai, P. T. Phan, N. H. Lovell, T. N. Do, Soft robotic fabric gripper with gecko adhesion and variable stiffness, Sensors and Actuators A: Physical, 323, 112673, 2021.
    [35] L. Pelliccia, M. Schumann, M. Dudczig, M. Lamonaca, P. Klimant, G. Di Gironimo, Implementation of tactile sensors on a 3-Fingers Robotiq® adaptive gripper and visualization in VR using Arduino controller, Procedia CIRP, 67, 250-255, 2018.
    [36] 莊承修, 具石墨烯壓電感測器的氣動柔性夾爪設計, 機械工程系, 國立臺灣科技大學碩博士論文, 2020.
    [37] P. Mukhopadhyay, B. B. Chaudhuri, A survey of Hough Transform, Pattern Recognition, 48(3), 993-1010, 2015.
    [38] 皮杰, 柳军, 徐磊, 严旎娜, 周科宏, 钱明艳, 三指柔性氣動夾爪結構設計與實驗, 農業機械學報, 2020.
    [39] 台灣錫特股份有限公司, URL: https://www.seattools.com.tw/ecommerce/measuring/weight/met-dfg5.html.
    [40] 黃琮翰, 智能壓電薄膜之壓力感測系統開發並應用於沖床模具之壽命評估, 機械工程系機電整合碩士班, 國立臺北科技大學碩博士論文, 2019.
    [41] TE Connectivity Measurement Specialties, URL: https://reurl.cc/LM5xEy.
    [42] TE Connectivity Measurement Specialties, URL: https://www.te.com.cn/chn-zh/product-CAT-PFS0015.html.

    QR CODE