簡易檢索 / 詳目顯示

研究生: 蔡知達
Chih-Ta Tsai
論文名稱: 混合再生能源發電系統之合適性規劃與技術分析
Suitability Planning and Technical Analysis of Hybrid Renewable Energy System
指導教授: 郭政謙
Cheng-Chien Kuo
口試委員: 張宏展
Hong-Chan Chang
楊念哲
Nien-Che Yang
陳鴻誠
Hung-Cheng Chen
黃維澤
Wei-tzer Huang
李俊耀
Chun-Yao Lee
郭政謙
Cheng-Chien Kuo
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 130
中文關鍵詞: 再生能源混合再生能源發電系統分散式發電儲能成本效益均化發電成本敏感性分析
外文關鍵詞: Renewable energy, hybrid renewable energy system, distributed generation, energy storage, cost benefit, levelized cost of energy, sensitivity analysis
相關次數: 點閱:246下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 推展再生能源的基礎建設已是當前全球所趨,應用於電氣化程度較低的島嶼、偏遠鄉村等低度開發地區,乃可提升供電品質及降低自然環境污染,進而可促進經濟與環境發展。
    本論文旨在提出混合再生能源發電系統之合適性規劃與模擬分析方法,以菲律賓巴丹島為案例,採用太陽光電、風力機、儲能與既有柴油發電機整合為混合再生能源發電系統,並進行合適性規劃與技術分析;透過使用HOMER軟體進行7種方案的技術經濟模擬分析,包括方案1:作為參考比較對象的柴油發電機供電系統,不具儲能的方案2~4:太陽光電/柴油發電機、風力機/柴油發電機、與太陽光電/風力機/柴油發電機之混合系統方案,及具儲能的方案5~7:太陽光電/儲能/柴油發電機、風力機/儲能/柴油發電機,與太陽光電/風力機/儲能/柴油發電機之混合系統等。
    考量再生能源電力應充分被使用,依所設定的多餘電能百分比須小於5%之限制條件下,從所得的各方案模擬結果,找出最低均化發電成本之混合再生能源容量配置方案,並探討其成本效益、電性、節省油耗與二氧化碳排放減量等,及進行關鍵參數敏感性分析。本研究方法亦可運用於其他整合再生能源應用之場域,其模擬分析結果將可作為投資決策的參考依據之一。


    The promotion of renewable energy infrastructure is the current global trend, and its application to low-developed areas such as islands and remote villages with a low degree of electrification can improve the quality of power supply and reduce natural environmental pollution, thereby promoting economic and environmental development.
    This study aims to propose the suitability planning and simulation analysis method of the hybrid renewable energy system (HRES) with the Batan Island in the Philippines as a case study. Photovoltaic (PV), wind turbine (WT), battery energy storage system (BESS) and existing diesel generators (DG) are integrated to form HRES, and suitability planning and technical analysis is carried out. Using the Hybrid Optimization Models for Energy Resources (HOMER) software, we perform simulation analysis of seven power supply solutions, including case 1: DG system as a reference, case 2~4: PV/DG HRES, WT/DG HRES, PV/WT/DG HRES without BESS, case 5~7: PV/BESS/DG HRES, WT/BESS/DG HRES, PV/WT/BESS/DG HRES with BESS.
    Considering that the renewable energy power should be fully used as much as possible, and under the restriction that the set excess electricity fraction must be less than 5%, from the obtained simulation results of each case, we can find the hybrid renewable energy capacity combination case with the lowest levelized cost of energy. We then discuss its cost benefits, electrical properties, fuel saving and carbon dioxide emission reduction, etc., and conduct sensitivity analysis of key parameters. This research method can also be applied to other fields of integrated renewable energy applications, and its simulation analysis results will be used as one of the references for investment decisions.

    中文摘要 I Abstract II 誌  謝 IV 目  錄 V 圖 目 錄 VIII 表 目 錄 XI 符 號 索 引 XIV 第一章 緒  論 1 1.1 研究背景與動機 1 1.2 文獻探討 4 1.3 研究方法 8 1.4 本論文之貢獻 10 1.5 章節概要 11 第二章 研究案例場址說明 13 2.1 研究場址之背景說明 13 2.2 負載資料 16 2.3 氣候條件 18 2.4 柴油價格資料 19 2.5 歷年名目利率與通貨膨脹率資料 20 2.6 本章結論 22 第三章 混合再生能源發電系統架構與技術分析 23 3.1 混合再生能源發電系統架構 23 3.2 太陽光電系統 25 3.3 風力發電系統 28 3.4 儲能系統 34 3.5 柴油發電機組 38 3.6 本章結論 40 第四章 合適性方案之評估方法與指標說明 41 4.1 評估方法 41 4.2 成本效益評估指標 41 4.2.1 實質利率(i) 42 4.2.2 淨現值成本(NPC) 42 4.2.3 資本回收因子(Capital recovery factor, CRF) 43 4.2.4 均化發電成本(LCOE) 44 4.2.5 專案收益(PB) 45 4.2.6 投資報酬率(ROI) 46 4.2.7 折現投資回收期(DDP) 46 4.2.8 內部投資報酬率(IRR) 47 4.3 電氣評估指標 48 4.3.1 再生能源佔比(RF) 48 4.3.2 多餘電能佔比(EEF) 48 4.4 CO2減量評估指標 49 4.5 本章結論 50 第五章 混合再生能源發電系統之模擬設定與分析 51 5.1 模擬分析模型與系統運作方式 51 5.1.1 HRES模擬分析模型 51 5.1.2 HRES運作模式設定 52 5.1.3 各關鍵設備成本設定 54 5.2 模擬分析結果 56 5.2.1 方案1: DG系統 56 5.2.2 方案2:PV/DG HRES 57 5.2.3 方案3:WT/DG HRES 62 5.2.4 方案4:PV/WT/DG HRES 65 5.2.5 方案5:PV/BESS/DG HRES 68 5.2.6 方案6:WT/BESS/DG HRES 72 5.2.7 方案7:PV/WT/BESS/DG HRES 74 5.3 本章結論 78 第六章 混合再生能源發電系統之敏感度模擬分析 80 6.1 日射量與風速變化 80 6.2 柴油價格變化 83 6.3 負載用電量 85 6.4 實質利率變化 87 6.5 系統設置成本變化 88 6.6 本章結論 91 第七章 結論與未來展望 92 7.1 結論 92 7.2 未來展望 95 參考文獻 96 作者簡介 106

    [1] United Nations, “Transforming our World: The 2030 Agenda for Sustainable Development”, 2015.
    [2] IEA, IRENA, UNSD, Word Bank Group, and WHO, “Tracking SDG 7: The Energy Progress Report 2020”, May 2020.
    [3] International Finance Corporation, “Off-grid solar market trend report”, February 2020.
    [4] J. Lian, Y. Zhang, C. Ma, Y. Yang, and E. Chaima, “A review on recent sizing methodologies of hybrid renewable energy systems”, Energy Convers. Manag., vol. 199, pp. 112027, 2019.
    [5] K. Anoune, M. Bouya, A. Astito, and A.B. Abdellah, “Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: a review”, Renew. Sustain. Energy Rev., vol. 93, pp. 652-73, 2018.
    [6] T. Khatib, I.A. Ibrahim, and A. Mohamed, “A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system”, Energy Convers. Manage.,” vol. 120, pp. 430-48, 2016.
    [7] A. Chauhan, and R.P. Saini, “A review on integrated renewable energy system based power generation for stand-alone applications: configurations, storage options, sizing methodologies and control”, Renew. Sustain. Energy Rev., vol. 38, pp. 99-120, 2014.
    [8] S. Mandelli, J. Barbieri, R. Mereu, and E. Colombo, “Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review”, Renew. Sustain. Energy Rev., vol. 50, pp.1621-1646, 2016.
    [9] REN21, “Renewables 2020 global status report”, 2020
    [10] REN21, “Asia and the pacific renewable energy status report”, 2019.
    [11] REN21, “SADC renewable energy and energy efficiency status report”, 2018.
    [12] N. J. Williams, P. Jaramillo, J. Taneja, T. S. Ustun, “Enabling private sector investment in microgrid-based rural electrification in developing countries: A review”, Renew. Sustain. Energy Rev., vol. 52, pp. 1268-1281, 2015.
    [13] N. U. Blum, R. S. Wakeling, and T. S. Schmidt, “Rural electrification through village grids—Assessing the cost competitiveness of isolated renewable energy technologies in Indonesia”, Renew. Sustain. Energy Rev., vol. 33, pp. 482-496, 2013.
    [14] T. Markvart, “Sizing of hybrid photovoltaic-wind energy systems”, Solar Energy, vol. 57(4), pp. 277-81, 1996.
    [15] J.G.G. Clúa, R.J. Mantz, and H.D. Battista, “Optimal sizing of a grid-assisted wind-hydrogen system”, Energy Convers. Manage., vol. 166, pp. 402-8, 2018.
    [16] A. Kaabeche, M. Belhamel, and R. Ibtiouen, “Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system” Energy, vol. 36(2), pp. 1214-22, 2011.
    [17] A. Giallanza, M. Porretto, G.L. Puma, and G. Marannano, “A sizing approach for stand-alone hybrid photovoltaic-wind-battery systems: a Sicilian case study”, J. Clean Prod., vol. 199, pp. 817-30, 2018.
    [18] H. A. Kazem, T. Khatib, and K. Sopian, “Sizing of a standalone photovoltaic/battery system at minimum cost for remote housing electrification in Sohar, Oman”, Energy Building, vol. 61, pp. 108-15, 2013.
    [19] A. Q. Jakhrani, A. K. Othman, A. R. H. Rigit, S. R. Samo, and S.A. Kamboh, “A novel analytical model for optimal sizing of standalone photovoltaic systems”, Energy, vol. 46(1), pp. 675-82, 2012.
    [20] I.S. Bayram, M. Abdallah, Tajer A, and K. A. Qaraqe, “A stochastic sizing approach for sharing-based energy storage applications”, IEEE Trans Smart Grid, vol. 8(3), pp. 1075–84, 2017.
    [21] M. Zaibi, H. Cherif, G. Champenois, B. Sareni, X. Roboam, and J. Belhadj, “Sizing methodology based on design of experiments for freshwater and electricity production from multi-source renewable energy systems”, Desalination, pp. Vol. 446, pp. 94-103, 2018.
    [22] R. Siddaiah, and R. P. Saini, “A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications”, Renew. Sustain. Energy Rev., vol.58, pp. 376-96, 2016.
    [23] Y. Zhang, C. Ma, J. Lian, X. Pang, Y. Qiao, and E. Chaima, “Optimal photovoltaic capacity of large-scale hydro-photovoltaic complementary systems considering electricity delivery demand and reservoir characteristics”, Energy Convers. Manage., vol. 195, pp. 597-608, 2019.
    [24] M. Amer, A. Namaane, and N.K. M’sirdi, “Optimization of hybrid renewable energy systems (HRES) using PSO for cost reduction” Energy Procedia, vol. 42, pp.318-27. 2013.
    [25] Z. Liu, Y. Chen, R. Zhuo, and H. Jia, “Energy storage capacity optimization for autonomy microgrid considering CHP and EV scheduling”, Appl. Energy, vol. 210, pp. 1113-25, 2018.
    [26] M. Sharafi, and T.Y. ELMekkawy, “Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach”, Renew. Energy, vol. 68, pp. 67-79. 2014.
    [27] K. Xie, J. Dong, H.M. Tai, B. Hu, and H. He, “Optimal planning of HVDC-based bundled wind-thermal generation and transmission system”, Energy Convers. Manage., vol. 115, pp. 71–9, 2016.
    [28] O. Ekren, and B.Y. Ekren, “Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing”, Appl. Energy, vol. 87(2), pp.592-8, 2010.
    [29] A. Menshsari, M. Ghiamy, M. M. M. Mousavi, M. Mohammad, and H. A. Bagal, “Optimal design of hybrid water-wind-solar system based on hydrogen storage and evaluation of reliability index of system using ant colony algorithm”, Int. Res. J. Appl. Basic Sci.,vol. 4(11), pp. 3582-600, 2013.
    [30] A. Maleki, and A. Askarzadeh, “Artificial bee swarm optimization for optimum sizing of a stand-alone PV/WT/FC hybrid system considering LPSP concept”, Sol. Energy, vol. 107, pp. 227-35, 2014.
    [31] A. F. Mohamed, M. M. Elarini, and A. M. Othman, “A new technique based on Artificial Bee Colony Algorithm for optimal sizing of stand-alone photovoltaic system”, J. Adv. Res., vol. 5(3), pp.397-408. 2014.
    [32] A. Maleki, and A. Askarzadeh, “Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: a case study of Rafsanjan, Iran”, Sustain. Energy Technol. Assess, vol. 7, pp. 147-53, 2014.
    [33] S. Sanajaoba, and E. Fernandez, “Maiden application of Cuckoo Search algorithm for optimal sizing of a remote hybrid renewable energy system”, Renew. Energy, vol. 96, pp. 1-10, 2016.
    [34] A, Berrueta, M. Heck, M. Jantsch, A. Ursúa, and P. Sanchis, “Combined dynamic programming and region-elimination technique algorithm for optimal sizing and management of lithium-ion batteries for photovoltaic plants”, Appl. Energy, vol. 228, pp.1–11, 2018.
    [35] Y. A. Katsigiannis, P. S. Georgilakis, and E. S. Karapidakis, “Hybrid simulated annealing–tabu search method for optimal sizing of autonomous power systems with renewables”, IEEE Trans. Sustain. Energy, vol. 3(3), pp. 330-8, 2012.
    [36] S. Ahmadi, and S. Abdi, “Application of the Hybrid Big Bang-Big Crunch algorithm for optimal sizing of a stand-alone hybrid PV/wind/battery system”, Sol. Energy, vol. 134, pp. 366–74, 2016.
    [37] I. Yahyaoui, A. Atieh, A. Serna, and F. Tadeo, “Sensitivity analysis for photovoltaic water pumping systems: energetic and economic studies”, Energy Convers. Manage., vol. 135, pp. 402-15, 2017.
    [38] H. Rezzouk, and A. Mellit, “Feasibility study and sensitivity analysis of a stand-alone photovoltaic-diesel-battery hybrid energy system in the north of Algeria”, Renew. Sustain. Energy Rev., Vol. 43, pp. 1134-1150, 2015.
    [39] S. Bentouba, and M. Bourouis, “Feasibility study of a wind–photovoltaic hybrid power generation system for a remote area in the extreme south of Algeria”, Appl. Therm. Eng., vol. 99, pp. 713-9, 2016.
    [40] I. B. Askari, and M. Ameri, “Techno-economic feasibility analysis of stand-alone renewable energy systems (PV/bat, Wind/bat and Hybrid PV/wind/bat) in Kerman, Iran.” Energy Sources part B., vol. 7(1), pp. 45–60, 2012.
    [41] T. Ma, H. Yang, and L. Lu, “A feasibility study of a stand-alone hybrid solar-wind-battery system for a remote island”, Appl. Energy, vol. 121, pp.149-58, 2014.
    [42] R. Rawat, and S. S. Chandel, “Simulation and optimization of solar photovoltaic-wind stand alone hybrid system in hilly terrain of India”, Int. J. Renew. Energy Res., vol.3(3), pp. 595-604, 2013.
    [43] S. Mandal, B.K. Das, and N. Hoque, “Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh”, J. Clean Prod., vol. 200, pp. 12–27, 2018.
    [44] F. Baghdadi, K. Mohammedi, S. Diaf, and O. Behar, “Feasibility study and energy conversion analysis of stand-alone hybrid renewable energy system”, Energy Convers. Manage., vol. 105, pp. 471-9, 2015.
    [45] S. A. Shezan, S. Julai, M. A. Kibria, K. R. Ullah, R. Saidur, W. T. Chong, and R. K. Akikur, “Performance analysis of an off-grid wind-PV (photovoltaic)-diesel-battery hybrid energy system feasible for remote areas”, J. Clean Prod., Vol. 125, pp. 121-132, 2016.
    [46] G. Bekele, and G. Tadesse, “Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia”, Appl. Energy, vol. 97, pp. 5-15. 2012.
    [47] M. R. B. Khan, R. Jidin, J. Pasupuleti, and S. A. Shaaya, “Optimal combination of solar, wind, micro-hydro and diesel systems based on actual seasonal load profiles for a resort island in the South China Sea”, Energy, Vol. 82, pp. 80-97, 2015.
    [48] S. Marais, K. Kusakana, and S. P. Koko, “Techno-economic feasibility analysis of a grid-interactive solar PV system for South African residential load,” IEEE clean energy, 2019 Int. Conf. Domest. Use Energy, pp. 163–168, 2016.
    [49] D. S. Koussa, and M. Koussa, “A feasibility and cost benefit prospection of grid connected hybrid power system (wind-photovoltaic)-Case study: an Algerian coastal site”, Renew. Sustain. Energy Rev., vol. 50, vol. 628-42, 2015.
    [50] A. Cano, F. Jurado, H. Sanchez, L. M. Fernández, and M. Castañeda “Optimal sizing of stand-alone hybrid systems based on PV/WT/FC by using several methodologies”, J. Energy Inst., vol. 87(4), pp.330-40, 2014.
    [51] A. Mills, and S. Al-Hallaj, “Simulation of hydrogen-based hybrid systems using Hybrid2 ”, Int. J. Hydrogen Energ., vol. 29, pp. 991-999, 2004.
    [52] C. Protogeropoulos, B. J. Brinkworth, and R. H. Marshall, “Sizing and techno-economical optimization for hybrid solar photovoltaic/wind power systems with battery storage”, Int. J. Energy Res., vol. 21(6), pp.465-79, 1997.
    [53] Department of Energy Philippines, “ Philippine Energy Plan 2016-2030”, 2016.
    [54] Department of Energy Philippines, “ Power Development Plan 2017-2040”, 2017.
    [55] S. Taniguchi, “Securing Access to Electricity with Variable Renewable Energy in the Philippines: Learning from the Nordic Model”, ADBI Working Paper Series, Asian Development Bank Institute, 2019.
    [56] 陳仲瑜, 「菲律賓離島綠能試點計畫與新南向綠能商機介紹」,工研院產業經濟與趨勢研究中心(IEK),2018。
    [57] 菲律賓國家電力公司離島電廠資料。取自:https://www.napocor.gov.ph/images/Downloads/TCGR/CY_2018_TCGR.pdf
    [58] Philippines' Department of Energy定期公告的油價資訊。取自:https://www.doe.gov.ph/retail-pump-prices-metro-manila?page=3
    [59] L. M. Halabi, S. Mekhilef, L. Olatomiwa, and J. Hazelton, “Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia,” Energy Convers. Manag., vol. 144, pp. 322–339, 2017.
    [60] 菲律賓中央銀行基準利率資料。取自:https://tradingeconomics.com/philippines/inflation-cpi
    [61] 菲律賓通貨膨脹率資料。取自:https://tradingeconomics.com/philippines/interest-rate
    [62] R. A. Badwawi, M. Abusara, and T. Mallick, “A Review of Hybrid Solar PV and Wind Energy System”, Smart Science, Vol. 3, pp. 127-138, 2015.
    [63] 同昱太陽光電模組規格。取自:https://www.gintung.com.tw/zh-tw/
    [64] SMA變流器規格。取自:https://www.sma.de/en/products/overview.html
    [65] HOMER Grid 3.14版軟體使用指引。取自:https://www.homerenergy.com/products/pro/docs/latest/index.html
    [66] G. Rohani, and M. Nour, “Techno-economical analysis of stand-alone hybrid renewable power system for Ras Musherib in United Arab Emirates”, Energy, Vol. 64, pp. 828-841, 2014.
    [67] S. M. Islam, C. V. Nayar, A. Abu-Siada, and M. M. Hasan,” 25 - Power Electronics for Renewable Energy Sources”, Power Electronics Handbook (Fourth Edition), pp. 783-827, 2018.
    [68] Bergey XL 10 風機產品資料。取自:http://www.bergey.com/products/grid-tied-turbines/excel-10/
    [69] N. Yimen, O. Hamandjoda, L. Meva’a, B. Ndzana andJ. Nganhou, “Analyzing of a Photovoltaic/Wind/Biogas/Pumped-Hydro Off-Grid Hybrid System for Rural Electrification in Sub-Saharan Africa—Case Study of Djoundé in Northern Cameroon”, Energies, vol. 11(10), pp.2644, 2018.
    [70] M. S. Adaramolaa, M. Agelin-Chaab, and S. S. Paulc, “Assessment of wind power generation along the coast of Ghana”, Energy Convers. Manage., vol. 77, pp. 61-69, 2014.
    [71] M. Mahmoud, M. Ramadan, A. G. Olabi, K. Pullen, and S. Nahera, “A review of mechanical energy storage systems combined with wind and solar applications,” Energy Convers. Manag., vol. 210, , pp. 112670, 2020.
    [72] A. Z. A. Shaqsi, K. Sopian, and A. Al-Hinai, “Review of energy storage services, applications, limitations, and benefits”, Energy Rep., vol. 6, pp. 288-306, 2020.
    [73] M. A. Hannan, M. Faisala, P. J. Ker, R. A. Begumb, Z. Y. Dong, and C. Zhang, “Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications”, Renew. Sustain. Energy Rev., vol. 131, pp. 110022, 2020.
    [74] 陳海生、俞振華、劉偉,「2020儲能產業研究白皮書」,CNESA中關村儲能產業技術聯盟,2020年。
    [75] Samsung SDI產品資料。取自:https://www.samsungsdi.com/ess/energy-storage-system-technology.html
    [76] World Energy Council, “Energy Storage Monitor:Latest trends in energy storage”, 2019.
    [77] ABB功率調節器產品資料。取自:https://www.fimer.com/sites/default/files/FIMER_PVS980-58BC_EN_Rev_A.pdf
    [78] G. Rohani, and M. Nour, “Techno-economical analysis of stand-alone hybrid renewable power system for Ras Musherib in United Arab Emirates”, Energy, vol. 64, pp. 828-841, 2014.
    [79] T. Gylfason, H. Tómasson, and G. Zoega, “Around the world with Irving Fisher”, North Am. J. Econ. Finance, vol. 36, pp. 232-243, 2016.

    無法下載圖示 全文公開日期 2025/12/24 (校內網路)
    全文公開日期 2025/12/24 (校外網路)
    全文公開日期 2025/12/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE