簡易檢索 / 詳目顯示

研究生: 邱柏瑞
Po-Jui Chiu
論文名稱: 系統不確定性與干擾影響下之多軸旋翼機姿態控制設計
Multirotor Attitude Control Design under the Influence of Plant Uncertainty and Disturbances
指導教授: 藍振洋
Chen-Yang Lan
口試委員: 劉孟昆
Meng-Kun Liu
林紀穎
Chi-Ying Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 140
中文關鍵詞: 多軸旋翼機姿態控制逆步控制干擾補償伺服架構
外文關鍵詞: Multirotor, Attitude Control, Backstepping, Disturbance Compensation, Servomechanism
相關次數: 點閱:189下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多軸無人機隨著進入二十一世紀後,得益於單晶片系統之發展,加上各種感測器小型化,多軸無人機得以快速發展。隨著近年來空拍機商用市場成熟,無人機應用發展逐步拓展至農業、工業、運送之場域。在應用領域拓展後,因各項應用之特性,所需的控制表現要求隨之提升,如飛行準確度、抗干擾能力等。因此除傳統PID控制器外,如滑動模式、適應性控制、逆步控制等非線性控制器也成為研究重點。
    本研究針對運輸、農業場合應用常出現之液體容器中,因飛行等造成液體晃動進行探討,分析干擾對姿態控制造成之影響,並以PID、狀態回授控制等基礎回授控制設計做為對照,再發展利用逆步控制器為原型設計能抵抗多種干擾之控制器。另外利用伺服架構使逆步控制器之頻寬限制進一步改善,並於測試架上實際測試,驗證所設計與提出之回授控制器實現於多軸機姿態控制之表現,及相對於對照組其姿態控制精度與複雜干擾抵抗能力之改善。


    With the advancement of microcontroller systems and miniaturization of various sensors in the 21st century, multirotor unmanned aerial vehicles (UAV) have been through rapid development and gained major attention. As the commercial market for drones has matured in recent years, their applications have expanded into fields such as agriculture, industry, and transportation.
    With the expansion of applications, the required control performance has raised due to specific features of various applications, such as flight accuracy and disturbance rejection capability. In addition to traditional PID controllers, non-linear controllers such as sliding mode, adaptive control, and backstepping control have become the focus of research.
    This study focuses on the investigation of fluid sloshing effects due to fluid containers that often encountered in transportation and agricultural applications. Its impact of disturbances on attitude control is emulated and analyzed. Basic feedback control designs such as PID and state feedback control are used as benchmark for comparison. The control approach based on the backstepping control design is then developed to counter various disturbances. Furthermore, a servo structure is utilized to improve the hardware bandwidth limitations posted on the backstepping controller. The designed feedback control strategy is implemented on a multirotor for attitude control, and its performance is tested and compared to the benchmark design in terms of attitude control precision and rejection to various complex disturbances.

    摘要 i ABSTRACT ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 xi 符號表 xii 縮寫表 xv 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 模型推導 2 1.2.2 系統鑑別 2 1.2.3 控制器 3 1.2.4 干擾估測方法 5 1.2.5 外部干擾源 8 1.3 研究問題與貢獻 8 1.4 論文架構概述 9 第二章 研究方法 10 2.1 基礎定義 10 2.1.1 座標系 10 2.1.2 姿態描述方法 11 2.1.3 旋轉矩陣 12 2.2 模型建構 14 2.2.1 機身模型 14 2.2.2 致動器模型 17 2.2.3 線性化模型 23 2.3 系統鑑別 24 2.3.1 機身參數 24 2.3.2 致動器參數 26 2.4 控制器 27 2.4.1 比例積分微分控制器 28 2.4.2 狀態回授控制器 29 2.4.3 逆步控制器 30 2.4.4 積分逆步控制器 34 2.4.5 干擾補償逆步控制器 39 2.4.6 伺服架構搭配干擾補償逆步控制器 44 第三章 實驗設備 53 3.1 多軸旋翼機 53 3.1.1 結構設計 53 3.1.2 動力零件 55 3.1.3 電源電路 55 3.1.4 感測器 56 3.1.5 飛控電腦 56 3.1.6 硬體規格一覽表 57 3.2 測試平台 58 3.3 馬達響應鑑別 59 第四章 參數鑑別與模型驗證 60 4.1 機身參數鑑別 60 4.1.1 機身參數 61 4.1.2 慣性矩 61 4.2 升力與阻力係數鑑別 62 4.3 馬達響應鑑別 66 4.4 模型建立與驗證模型 69 第五章 控制器設計與實現 72 5.1 控制規格設定、分析標準與測試條件 72 5.1.1 控制規格設定、分析標準 72 5.1.2 控制器測試條件 72 5.2 控制器模擬測試 74 5.2.1 比例積分微分控制器 74 5.2.2 狀態回授控制器 77 5.2.3 逆步控制器 80 5.2.4 積分逆步控制器 83 5.2.5 干擾補償逆步控制器 87 5.2.6 伺服架構搭配干擾補償逆步控制器 90 5.2.7 模擬測試比較與分析 100 5.3 控制器實際測試 104 5.3.1 積分逆步控制器 104 5.3.2 干擾補償逆步控制器 105 5.3.3 伺服架構搭配干擾補償逆步控制器 106 5.3.4 實際測試比較與分析 111 第六章 結論 115 6.1 結果討論 115 6.2 未來展望 116 參考文獻 117

    [1] A. M. Research. "Unmanned Aerial Vehicle (UAV) Market Size, Growth, Analysis." https://www.alliedmarketresearch.com/unmanned-aerial-vehicle-market-A09059 (accessed.
    [2] P. Research. "UAV Market, Unmanned Aerial Vehicle Market Size, Report 2022-2030." https://www.precedenceresearch.com/unmanned-aerial-vehicle-market (accessed.
    [3] V. M. R. C. Services. "Unmanned Aerial Vehicle (uav) Market." https://www.vantagemarketresearch.com/industry-report/unmanned-aerial-vehicle-uav-market-2086 (accessed.
    [4] H. Shraim, A. Awada, and R. Youness, "A survey on quadrotors: Configurations, modeling and identification, control, collision avoidance, fault diagnosis and tolerant control," IEEE Aerospace and Electronic Systems Magazine, vol. 33, no. 7, pp. 14-33, 2018, doi: 10.1109/maes.2018.160246.
    [5] H. Lim, J. Park, D. Lee, and H. J. Kim, "Build Your Own Quadrotor: Open-Source Projects on Unmanned Aerial Vehicles," IEEE Robotics & Automation Magazine, vol. 19, no. 3, pp. 33-45, 2012, doi: 10.1109/mra.2012.2205629.
    [6] T. P. Nascimento and M. Saska, "Position and attitude control of multi-rotor aerial vehicles: A survey," (in English), Annual Reviews in Control, Review vol. 48, pp. 129-146, 2019, doi: 10.1016/j.arcontrol.2019.08.004.
    [7] T. Dief, A. Kassem, and G. M. El-Bayoumi, "Modeling and Attitude Stabilization of Indoor Quad Rotor," International Review of Aerospace Engineering, vol. 7, pp. 55-60, 04/01 2014, doi: 10.15866/irease.v7i2.783.
    [8] A. Alaimo, V. Artale, C. Milazzo, A. Ricciardello, and L. Trefiletti, "Mathematical modeling and control of a hexacopter," 2013: IEEE, doi: 10.1109/icuas.2013.6564793. [Online]. Available: https://dx.doi.org/10.1109/icuas.2013.6564793
    [9] T. S. Alderete, "SIMULATOR AERO MODEL IMPLEMENTATION," 1997.
    [10] Q. Lu, B. Ren, and S. Parameswaran, "Uncertainty and Disturbance Estimator-Based Global Trajectory Tracking Control for a Quadrotor," IEEE/ASME Transactions on Mechatronics, vol. 25, no. 3, pp. 1519-1530, 2020, doi: 10.1109/tmech.2020.2978529.
    [11] 洪浚耀, "基於myRIO的四旋翼機之控制器設計與實作," 碩士, 機械工程系, 國立臺灣科技大學, 2022. [Online]. Available: https://hdl.handle.net/11296/3sdv9b
    [12] A. Noormohammadi-Asl, O. Esrafilian, M. Ahangar Arzati, and H. D. Taghirad, "System identification and H∞-based control of quadrotor attitude," Mechanical Systems and Signal Processing, vol. 135, p. 106358, 2020, doi: 10.1016/j.ymssp.2019.106358.
    [13] A. Chovancová, T. Fico, L. Chovanec, and P. Hubinský, "Mathematical Modelling and Parameter Identification of Quadrotor (a survey)," Procedia Engineering, vol. 96, 12/31 2014, doi: 10.1016/j.proeng.2014.12.139.
    [14] J. Habeck and P. Seiler, "Moment of Inertia Estimation Using a Bifilar Pendulum," 2016.
    [15] A. Kotikalpudi, B. R. Taylor, C. P. Moreno, H. Pfifer, and G. J. Balas, "Swing Tests for Estimation of Moments of Inertia," 2013.
    [16] W. Niken Tri, L. Nadia Wahyu, H. Hartono, and S. Supriyadi, "Measurement of Moment of Inertia Through a Bifilar Pendulum Swing Based on a Microcontroller," Journal of Natural Sciences and Mathematics Research, no. Vol 5, No 2 (2019): December, pp. 28-33, 2019. [Online]. Available: https://journal.walisongo.ac.id/index.php/JNSMR/article/view/11028/3930.
    [17] C. Troll and J.-P. Majschak, "Modeling Transient Liquid Slosh Behavior at Variable Operating Speeds Induced by Intermittent Motions in Packaging Machines," Applied Sciences, vol. 10, no. 5, p. 1859, 2020, doi: 10.3390/app10051859.
    [18] H. Sayyaadi and A. Soltani, "Modeling and control for cooperative transport of a slung fluid container using quadrotors," Chinese Journal of Aeronautics, vol. 31, no. 2, pp. 262-272, 2018/02/01/ 2018, doi: https://doi.org/10.1016/j.cja.2017.12.005.
    [19] S. Kurode, B. Bandyopadhyay, and P. S. Gandhi, "Sliding mode observer for estimation of slosh states in a moving container," 2009: IEEE, doi: 10.1109/icit.2009.4939649. [Online]. Available: https://dx.doi.org/10.1109/icit.2009.4939649
    [20] F. L. Markley, F. H. Bauer, J. J. Deily, and M. D. Femiano, "Attitude control system conceptual design for Geostationary Operational Environmental Satellite spacecraft series," Journal of Guidance, Control, and Dynamics, vol. 18, no. 2, pp. 247-255, 1995, doi: 10.2514/3.21377.
    [21] J. A. Marshall, W. Sun, and A. L’Afflitto, "A survey of guidance, navigation, and control systems for autonomous multi-rotor small unmanned aerial systems," Annual Reviews in Control, vol. 52, pp. 390-427, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.arcontrol.2021.10.013.
    [22] J. Kim, S. A. Gadsden, and S. A. Wilkerson, "A Comprehensive Survey of Control Strategies for Autonomous Quadrotors," Canadian Journal of Electrical and Computer Engineering, vol. 43, no. 1, pp. 3-16, 2020, doi: 10.1109/cjece.2019.2920938.
    [23] P. E. I. Pounds, D. R. Bersak, and A. M. Dollar, "Stability of small-scale UAV helicopters and quadrotors with added payload mass under PID control," (in English), Auton. Robot., Article vol. 33, no. 1-2, pp. 129-142, Aug 2012, doi: 10.1007/s10514-012-9280-5.
    [24] D. Gautam and C. Ha, "Control of a Quadrotor Using a Smart Self-Tuning Fuzzy PID Controller," (in English), Int. J. Adv. Robot. Syst., Article vol. 10, p. 9, Nov 2013, Art no. 380, doi: 10.5772/56911.
    [25] Y. M. Chen, Y. L. He, and M. F. Zhou, "Decentralized PID neural network control for a quadrotor helicopter subjected to wind disturbance," (in English), J. Cent. South Univ., Article vol. 22, no. 1, pp. 168-179, Jan 2015, doi: 10.1007/s11771-015-2507-9.
    [26] S. Bouabdallah, A. Noth, and R. Siegwart, "PID vs LQ control techniques applied to an indoor micro quadrotor," 2004: IEEE, doi: 10.1109/iros.2004.1389776. [Online]. Available: https://dx.doi.org/10.1109/iros.2004.1389776
    [27] L. Martins, C. Cardeira, and P. Oliveira, "Linear Quadratic Regulator for Trajectory Tracking of a Quadrotor," IFAC-PapersOnLine, vol. 52, no. 12, pp. 176-181, 2019/01/01/ 2019, doi: https://doi.org/10.1016/j.ifacol.2019.11.195.
    [28] J.-Y. Hong, P.-J. Chiu, C.-D. Pong, and C.-Y. Lan, "Attitude and Altitude Control Design and Implementation of Quadrotor Using NI myRIO," Electronics, vol. 12, no. 7, p. 1526, 2023. [Online]. Available: https://www.mdpi.com/2079-9292/12/7/1526.
    [29] G. V. Raffo, M. G. Ortega, and F. R. Rubio, "An integral predictive/nonlinear H-infinity control structure for a quadrotor helicopter," (in English), Automatica, Article vol. 46, no. 1, pp. 29-39, Jan 2010, doi: 10.1016/j.automatica.2009.10.018.
    [30] X. M. Lyu, J. N. Zhou, H. W. Gu, Z. X. Li, S. J. Shen, and F. Zhang, "Disturbance Observer Based Hovering Control of Quadrotor Tail-Sitter VTOL UAVs Using H-infinity Synthesis," (in English), Ieee Robotics and Automation Letters, Article vol. 3, no. 4, pp. 2910-2917, Oct 2018, doi: 10.1109/lra.2018.2847405.
    [31] F. Chen, R. Jiang, K. Zhang, B. Jiang, and G. Tao, "Robust Backstepping Sliding Mode Control and Observer-based Fault Estimation for a Quadrotor UAV," IEEE Transactions on Industrial Electronics, pp. 1-1, 2016, doi: 10.1109/tie.2016.2552151.
    [32] L. Besnard, Y. B. Shtessel, and B. Landrum, "Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer," (in English), J. Frankl. Inst.-Eng. Appl. Math., Article vol. 349, no. 2, pp. 658-684, Mar 2012, doi: 10.1016/j.jfranklin.2011.06.031.
    [33] J. J. Xiong and G. B. Zhang, "Global fast dynamic terminal sliding mode control for a quadrotor UAV," (in English), Isa Transactions, Article vol. 66, pp. 233-240, Jan 2017, doi: 10.1016/j.isatra.2016.09.019.
    [34] B. Zhao, B. Xian, Y. Zhang, and X. Zhang, "Nonlinear Robust Adaptive Tracking Control of a Quadrotor UAV Via Immersion and Invariance Methodology," (in English), Ieee Transactions on Industrial Electronics, Article vol. 62, no. 5, pp. 2891-2902, May 2015, doi: 10.1109/tie.2014.2364982.
    [35] Z. T. Dydek, A. M. Annaswamy, and E. Lavretsky, "Adaptive Control of Quadrotor UAVs: A Design Trade Study With Flight Evaluations," (in English), Ieee Transactions on Control Systems Technology, Article vol. 21, no. 4, pp. 1400-1406, Jul 2013, doi: 10.1109/tcst.2012.2200104.
    [36] P. V. Kokotovic, M. Krstic, and I. Kanellakopoulos, "Backstepping to passivity: recursive design of adaptive systems," 1992: IEEE, doi: 10.1109/cdc.1992.371031. [Online]. Available: https://dx.doi.org/10.1109/cdc.1992.371031
    [37] C. Tian, J. Wang, Z. Yin, and G. Yu, "Integral backstepping based nonlinear control for quadrotor," 2016 2016: IEEE, doi: 10.1109/chicc.2016.7555034. [Online]. Available: https://dx.doi.org/10.1109/chicc.2016.7555034
    [38] L.-X. Xu, H.-J. Ma, D. Guo, A.-H. Xie, and D.-L. Song, "Backstepping Sliding-Mode and Cascade Active Disturbance Rejection Control for a Quadrotor UAV," IEEE/ASME Transactions on Mechatronics, vol. 25, no. 6, pp. 2743-2753, 2020, doi: 10.1109/tmech.2020.2990582.
    [39] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, "Control of a Quadrotor With Reinforcement Learning," IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 2096-2103, 2017, doi: 10.1109/lra.2017.2720851.
    [40] W. H. Chen, J. Yang, L. Guo, and S. H. Li, "Disturbance-Observer-Based Control and Related Methods-An Overview," (in English), Ieee Transactions on Industrial Electronics, Article vol. 63, no. 2, pp. 1083-1095, Feb 2016, doi: 10.1109/tie.2015.2478397.
    [41] A. Castillo, R. Sanz, P. Garcia, W. Qiu, H. D. Wang, and C. Xu, "Disturbance observer-based quadrotor attitude tracking control for aggressive maneuvers," (in English), Control Eng. Practice, Article vol. 82, pp. 14-23, Jan 2019, doi: 10.1016/j.conengprac.2018.09.016.
    [42] Y. Huang and W. C. Xue, "Active disturbance rejection control: Methodology and theoretical analysis," (in English), Isa Transactions, Article vol. 53, no. 4, pp. 963-976, Jul 2014, doi: 10.1016/j.isatra.2014.03.003.
    [43] H. J. Yang, L. Cheng, Y. Q. Xia, and Y. Yuan, "Active Disturbance Rejection Attitude Control for a Dual Closed-Loop Quadrotor Under Gust Wind," (in English), Ieee Transactions on Control Systems Technology, Article vol. 26, no. 4, pp. 1400-1405, Jul 2018, doi: 10.1109/tcst.2017.2710951.
    [44] J. H. She, X. Xin, and Y. D. Pan, "Equivalent-Input-Disturbance Approach-Analysis and Application to Disturbance Rejection in Dual-Stage Feed Drive Control System," (in English), IEEE-ASME Trans. Mechatron., Article vol. 16, no. 2, pp. 330-340, Apr 2011, doi: 10.1109/tmech.2010.2043258.
    [45] K. Zhao, J. Zhang, D. Ma, and Y. Xia, "Composite Disturbance Rejection Attitude Control for Quadrotor With Unknown Disturbance," IEEE Transactions on Industrial Electronics, vol. 67, no. 8, pp. 6894-6903, 2020, doi: 10.1109/tie.2019.2937065.
    [46] Q. Zang and J. Huang, "Dynamics and Control of Three-Dimensional Slosh in a Moving Rectangular Liquid Container Undergoing Planar Excitations," IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2309-2318, 2015, doi: 10.1109/tie.2014.2361799.
    [47] X. W. Wu, B. Xiao, and Y. H. Qu, "Modeling and sliding mode-based attitude tracking control of a quadrotor UAV with time-varying mass," (in English), Isa Transactions, Article vol. 124, pp. 436-443, May 2022, doi: 10.1016/j.isatra.2019.08.017.
    [48] S. Lee, D. K. Giri, and H. Son, "Modeling and control of quadrotor UAV subject to variations in center of gravity and mass," in 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 28 June-1 July 2017 2017, pp. 85-90, doi: 10.1109/URAI.2017.7992893.
    [49] Y.-B. Jia, "Quaternions (ComS477/577Notes) ", 2022. [Online]. Available: https://faculty.sites.iastate.edu/jia/files/inline-files/quaternion.pdf
    [50] M. Ben-Ari, "A Tutorial on Euler Angles and Quaternions," 2017. [Online]. Available: http://www.ravvenlabs.com/uploads/1/1/8/4/118484574/quaternion-tutorial-2-0.pdf
    [51] R. C. Hibbeler, Engineering Mechanics Dynamics. Pearson, 2017.
    [52] I. The MathWorks. "tfest - Estimate transfer function model." https://www.mathworks.com/help/ident/ref/tfest.html#btkf8hm-2 (accessed 2023).
    [53] C. Xiang, X. Wang, Y. Ma, and B. Xu, "Practical Modeling and Comprehensive System Identification of a BLDC Motor," Mathematical Problems in Engineering, vol. 2015, p. 879581, 2015/04/07 2015, doi: 10.1155/2015/879581.
    [54] N. S. Nise, Control systems engineering, 7th Edition. John Wiley & Sons, 2014.
    [55] 趙祐陞, "MIMO LTI系統之強健輸出回授追蹤控制器設計," 碩士, 機械工程系, 國立臺灣科技大學, 2020. [Online]. Available: https://hdl.handle.net/11296/uyp25f
    [56] I. Kanellakopoulos and P. T. Krein, "Integral-Action Nonlinear Control of Induction Motors," IFAC Proceedings Volumes, vol. 26, no. 2, Part 1, pp. 117-120, 1993/07/01/ 1993, doi: https://doi.org/10.1016/S1474-6670(17)49088-4.
    [57] P. C. Young and L. D. Levsen, "Linear System Design. Application of State Space Methods to the Design of Linear Time-Invariant Systems," NAVAL WEAPONS CENTER CHINA LAKE CA, 1970.
    [58] H. M. Power and B. Porter, "Necessary and sufficient conditions for controllability of multivariable systems incorporating integral feedback," Electronics Letters, vol. 6, pp. 815-816, 1970.
    [59] P. C. Young and J. Willems, "An approach to the linear multivariable servomechanism problem," International journal of control, vol. 15, no. 5, pp. 961-979, 1972.
    [60] N. K. Tran, E. Bulka, and M. Nahon, "Quadrotor control in a wind field," 2015: IEEE, doi: 10.1109/icuas.2015.7152306. [Online]. Available: https://dx.doi.org/10.1109/icuas.2015.7152306

    QR CODE