簡易檢索 / 詳目顯示

研究生: 陳振偉
Chen-Wei Chen
論文名稱: 具多種運動步態之仿生式橫向抓枝機器人設計與實現
Design and Implementation of a Bio-inspired Multi-locomotion Transverse Brachiation Robot
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 黃緒哲
Shiuh-Jer Huang
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 112
中文關鍵詞: 橫向抓枝機器人連續抓枝橫向抓枝步態擺盪運動運動姿態控制
外文關鍵詞: Transverse brachiation robot, continuous brachiation, transverse ledge brachiation, swing motion, locomotion control
相關次數: 點閱:210下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在藉由模仿、分析攀爬運動員於壁面凸桿之橫向抓枝動作,開發一具多種運動步態之仿生式橫向抓技機器人,以便增加機器人於壁面抓枝時的靈活度與避障能力。本研究提出兩種連續抓枝運動步態:(1)橫向抓枝步態與(2)橫向擺盪抓枝步態。其中第一種步態是設計適當的肩膀關節馬達驅動邏輯以便帶動手臂進行橫向抓枝移動;後者則是加入了擺盪尾巴累積能量的方式,利用慣性力來完成橫向抓枝移動並獲得較遠的抓技距離。為了滿足上述兩種不同運動步態下的肩膀關節剛性需求,我們自行設計一機械式離合器實現橫向抓枝動作過程中肩膀關節剛性切換動作。由於第二種步態中多了擺盪儲能階段,我們以拉格朗日方程推導機器人於擺盪階段的動態模型並藉由模擬結果設計於後續抓枝過程中之所需高階運動控制策略。一系列的水平抓技實驗結果顯示本研究所設計之機器人可分別完成步態一與步態二的連續抓枝動作,並可視需求自由切換這兩種運動步態。未來將往改良夾爪夾持力以及加入夾爪姿態復歸校正階段這幾個方向改良以便提高機器人在連續攀爬時之強健性。


    This thesis presents a bio-inspired multi-locomotion transverse brachiation robot by imitating and analyzing the transverse grasping action of ledge climbers. Based on the analysis of the climbers’ locomotion, we propose two kinds of continuous brachiation locomotion styles: (1) transverse ledge brachiation, and (2) transverse ledge brachiation with swing motion, in which the ultimate goal of this novel robot design is to increase the agility of robot climbing and especially the capability of overcoming ledge-like obstacles on the wall. The working principle of the first locomotion is to actuate the shoulder joint motors with designed ON/OFF actuation logic flows for transverse brachiation. Comparing to the first locomotion, the latter locomotion is more complicated by adding swing motion to accumulate more energy and take advantage of inertial force for larger distance brachiation. In this study, a self-made mechanical clutch design is applied to facilitate the needs of stiffness change in shoulder joints for these two different locomotion styles. For the second locomotion, we apply the Lagrange method to derive the robot dynamics during the swing phase and analyze the swing results to design the locomotion controller based on the movement logic of the first locomotion. A series of transverse brachiation experiments are conducted to verify the feasibility of each locomotion and the potential benefits of switching between these two locomotion styles. Future work will focus on the improvement of gripper holding force and inclusion of gripper posture adjustment phase in the locomotion design for more robust continuous brachiation.

    摘要(I) Abstract(II) 致謝(II) 目錄(IV) 圖目錄(VI) 表目錄(XI) 第一章 緒論(1) 1.1前言(1) 1.2文獻回顧(1) 1.3研究動機(6) 1.4本文貢獻與架構(11) 第二章 系統設計概念與步態分析(12) 2.1橫向抓枝動作流程分析(12) 2.2系統步態分析及架構需求(14) 2.3橫向抓枝機器人參數設計(19) 第三章 系統架構(22) 3.1機構設計(23) 3.1.1夾爪夾持機構設計(26) 3.1.2離合器機構設計(30) 3.2嵌入式電路設計(32) 3.2.1系統微控制器(MCU)(34) 3.2.2感測器(Sensors)(35) 3.2.3致動器(Actuators)(42) 3.2.4通訊及儲存裝置(Communication & Storage)(46) 第四章 系統動態模型推導(48) 4.1擺盪階段(Swing Phase)動態模型(48) 4.2機器人抓枝距離(54) 第五章 系統動態分析與動作流程控制器設計(56) 5.1機器人擺盪姿態控制模擬 (56) 5.2步態一動作流程控制器設計(60) 5.2.1初始階段(Initial Phase)(61) 5.2.2橫向抓握階段(One Hand Transverse Phase)(61) 5.2.3身軀調整階段(Body Adjustment Phase)(62) 5.2.4復歸(Reset Phase)(62) 5.3步態二動作流程控制器設計(64) 5.3.1擺盪階段(Swing Phase)(65) 5.3.2單手釋放階段(One Hand Releasing Phase)(66) 5.3.3單手橫向抓握階段(One Hand Transverse Phase)(66) 5.3.4復歸(Reset Phase)(67) 第六章 實驗結果(68) 6.1實驗架設(68) 6.2步態一:橫向抓枝步態實驗(69) 6.3步態二:橫向擺盪抓枝步態實驗(80) 6.3.1擺盪階段實驗(81) 6.3.2機器人擺盪抓枝實驗(步態二)(84) 6.4實驗總結(93) 第七章 結論與未來目標(95) 7.1結論(95) 7.2未來目標(96) 參考文獻(97)

    [1] B. Chu, K. Jung, C.-S. Han, D. J. I. J. o. P. E. Hong, and Manufacturing, "A survey of climbing robots: Locomotion and adhesion," vol. 11, pp. 633-647, 2010.

    [2] M. Minor, H. Dulimarta, G. Danghi, R. Mukherjee, R. L. Tummala, and D. Aslam, "Design, implementation, and evaluation of an under-actuated miniature biped climbing robot," in Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113), 2000, vol. 3, pp. 1999-2005 vol.3.

    [3] S. Hirose and H. Arikawa, "Coupled and decoupled actuation of robotic mechanisms," in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 2000, vol. 1, pp. 33-39 vol.1.

    [4] F. Yanqiong, W. Qiuxuan, and Z. Yuhang, "Study on climbing slope of wheel-track hybrid mobile robot," in 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 2016, pp. 1-5.

    [5] M. Dissanayake, T. P. Sattar, O. Howlader, I. Pinson, and T. Gan, "Tracked-wheel crawler robot for vertically aligned mooring chain climbing design, simulation and validation of a climbing robot for mooring chains," in 2017 IEEE International Conference on Industrial and Information Systems (ICIIS), 2017, pp. 1-6.

    [6] A. Nishi and H. Miyagi, "Control of a wall-climbing robot using propulsive force of propeller," in Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91, 1991, pp. 1561-1567 vol.3.

    [7] J. Shen and Y. Liu, "Design and analysis of an obstacle-crossing wall-climbing robot mechanism," in 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2015, pp. 2067-2072.

    [8] D. Longo and G. Muscato, "The Alicia/sup 3/ climbing robot: a three-module robot for automatic wall inspection," IEEE Robotics & Automation Magazine, vol. 13, no. 1, pp. 42-50, 2006.

    [9] D. Santos, B. Heyneman, S. Kim, N. Esparza, and M. R. Cutkosky, "Gecko-inspired climbing behaviors on vertical and overhanging surfaces," in 2008 IEEE International Conference on Robotics and Automation, 2008, pp. 1125-1131.

    [10] J. Liu, L. Xu, J. Xu, X. Wu, M. Wang, and L. Lu, "A Bio-inspired Wall-climbing Robot with Claw Wheels and Adhesive Tracks," in 2018 IEEE International Conference on Information and Automation (ICIA), 2018, pp. 257-262.

    [11] 台灣住宅外牆。檢自http://mypaper.pchome.com.tw/moonhang17/post/1375692712.

    [12] 台灣外牆水平無間隔凸起物。檢自http://www.top-nittai.com.tw/news/html/?448.html.

    [13] 台灣外牆水平間隔不連續凸起物。檢自http://www.touchcoating.com/article/walldesign-wujie/.

    [14] Monkey Bar Workout - 9 Moves You can do on the Monkey Bars. Retrieved from https://www.youtube.com/watch?v=8bppcsg07Rc.

    [15] 15th January 2016 - Brachiation Drills. Retrieved from https://www.youtube.com/watch?v=RTAMr8-L8cw.

    [16] Z. Lu, T. Aoyama, K. Sekiyama, Y. Hasegawa, and T. Fukuda, "Dynamic transition motion from ladder climbing to brachiation for a multi-locomotion robot," in 2010 International Symposium on Micro-NanoMechatronics and Human Science, 2010, pp. 351-355.

    [17] Z. Lu, T. Aoyama, K. Sekiyama, Y. Hasegawa, and T. Fukuda, "Walk-to-brachiate transfer of multi-locomotion robot with error recovery," in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp. 166-171.

    [18] Z. Lu, T. Aoyama, K. Sekiyama, Y. Hasegawa, and T. Fukuda, "Vertical ladder climbing down motion with internal stress adjustment for a multi-locomotion robot," in 2011 International Symposium on Micro-NanoMechatronics and Human Science, 2011, pp. 403-408.

    [19] Z. Lu, T. Aoyama, K. Sekiyama, Y. Hasegawa, and T. Fukuda, "Motion Transfer Control From Walking to Brachiation Through Vertical Ladder Climbing for a Multi-Locomotion Robot," IEEE/ASME Transactions on Mechatronics, vol. 19, no. 5, pp. 1681-1693, 2014.

    [20] L. Zhiguo, H. Yoneda, K. Sekiyama, T. Fukuda, and Y. Hasegawa, "Transition motion from ladder climbing to brachiation for multi-locomotion robot," in 2009 International Conference on Mechatronics and Automation, 2009, pp. 1916-1921.

    [21] 楊宗翰,「橫向飛躍抓枝機器人之設計改良與運動控制研究」,國立臺灣科技大學機械工程系碩士論文,2018。.

    [22] 胡婷鈞,「可於壁面凸塊進行橫向攀爬之抓枝機器人設計與運動控制策略研究」,國立臺灣科技大學機械工程系碩士論文,2018。.

    [23] 田詠傑,「橫向抓枝機器人之設計與實作」,國立臺灣科技大學機械工程系碩士論文,2019。.

    [24] C. Lin, S. Shiu, Z. Yang, and R. Chen, "Design and swing strategy of a bio-inspired robot capable of transverse ricochetal brachiation," in 2017 IEEE International Conference on Mechatronics and Automation (ICMA), 2017, pp. 943-948.

    [25] Z. Yang and C. Lin, "Experimental Investigation on Flying Motion of Transverse Brachiation Robot," in 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2018, pp. 1402-1407.

    [26] Manual Transmission, How it works ? Retrieved from https://www.youtube.com/watch?v=wCu9W9xNwtI.

    [27] 手動變速箱中的同步器起什麼作用?它的工作原理是什麼?檢自 https://kknews.cc/car/aaaylxx.html.

    [28] 解析手動變速同步器的作用、結構和工作過程。檢自 https://kknews.cc/zh-tw/car/y85lvqk.html.

    [29] Discovery kit with STM32F407VG MCU - STMicroelectronics. Retrieved from https://www.st.com/resource/en/user_manual/dm00039084-discovery-kit-with-stm32f407vg-mcu-stmicroelectronics.pdf.

    [30] Arduino Nano 3.1 - electronics source. Retrieved from https://www.es.co.th/Schemetic/PDF/ARMB-0022.PDF.

    [31] IMU user guide. Retrieved from file:///C:/Users/Chen%20Zhen-Wei/Desktop/GY-953user_guide.pdf.

    [32] ENX10 EASY 128 IMP datasheet. Retrieved from https://www.maxongroup.com/medias/CMS_Downloads/DIVERSES/ENXEASY_en.pdf.

    [33] ENX10 EASY 256IMP datasheet. Retrieved from https://www.maxongroup.com/medias/CMS_Downloads/DIVERSES/ENXEASY_en.pdf.

    [34] HCTL-2032-SC datasheet. Retrieved from https://media.digikey.com/pdf/Data%20Sheets/Avago%20PDFs/HCTL-2032,2022.pdf.

    [35] 74HCT245 datasheet. Retrieved from https://www.alldatasheet.com/view.jsp?Searchword=74hct245%20datasheet&gclid=Cj0KCQjwpNr4BRDYARIsAADIx9zhD6gHEQurPmCnLpIsuMM6QElewr6dZtZeR7j_ProR0npVUznb3icaAhnKEALw_wcB.

    [36] INTERLINK FSR-402 datasheet. Retrieved from https://cdn.sparkfun.com/assets/8/a/1/2/0/2010-10-26-DataSheet-FSR402-Layout2.pdf.

    [37] DSM44 Digital Servo datasheet. Retrieved from https://www.alldatasheet.com/view.jsp?Searchword=DSM44&mo.

    [38] DCX22L GB SL 12V datasheet. Retrieved from https://www.maxongroup.com/medias/CMS_Downloads/DIVERSES/12_137_EN.pdf.

    [39] GPX22A16:1 datasheet. Retrieved from https://www.maxongroup.com/medias/CMS_Downloads/DIVERSES/12_203_EN.pdf.

    [40] DCX16L GB SL 12V datasheet. Retrieved from http://www.maxonmotor.com/medias/CMS_Downloads/DIVERSES/12_137_EN.pdf.

    [41] GPX16A 28:1 datasheet. Retrieved from : http://www.maxonmotor.com/medias/CMS_Downloads/DIVERSES/12_203_EN.pdf.

    [42] FAT File Systems. FAT32, FAT16, FAT12. Retrieved from https://www.ntfs.com/fat_systems.htm.

    [43] M. K. Gupta, N. Sinha, K. Bansal, and A. K. Singh, "Natural frequencies of multiple pendulum systems under free condition," Archive of Applied Mechanics, vol. 86, no. 6, pp. 1049-1061, 2016/06/01 2016.

    無法下載圖示 全文公開日期 2025/08/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE