簡易檢索 / 詳目顯示

研究生: 吳柏彥
Po-Yan Wu
論文名稱: 永磁同步馬達傳動異常之模型式故障診斷
Model-based Fault Detection and Isolation for Permanent Magnet Synchronous Motors Transmission Faults
指導教授: 藍振洋
Chen-yang Lan
口試委員: 藍振洋
Chen-yang Lan
劉孟昆
Meng-Kun Liu
陳韋任
Wei-Jen Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 152
中文關鍵詞: 永磁同步馬達異常監診模型式異常診斷遞迴最小平方法子空間數值系統鑑別傳動設備異常電流殘差頻譜
外文關鍵詞: Model based fault detect and diagnosis, Numerical algorithm for subspace identification, Transmission Faults, Residual Current Spectrum
相關次數: 點閱:225下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

馬達轉動設備在現代工業化中佔有一席之地,不管是工廠的原物料輸送、產線的機械設備驅動或是電動車的驅動系統,皆存在著馬達轉動設備。為了預防轉動設備故障所導致的經濟損失以及安全危害,可透過線上訊號擷取分析對設備進行線上異常偵測與診斷。而傳統的訊號分析透過加速規與比流計即可進行初步的故障檢知,然而訊號式分析在設備初期異常、負載不足及環境干擾下的狀況當中仍易失效誤判。因此,本研究提出以模型式電壓電流訊號分析,進行永磁同步馬達傳動系統之異常偵測與診斷,並針對常見三種傳動元件進行故障檢知分析。結合機械傳動系統與永磁同步馬達物理模型,在永磁同步馬達負載變動不大的狀況下,合理假設系統處於準靜態,並透過系統鑑別找出物理模型及參數。本研究分別應用灰盒模型之遞迴最小平方法以及黑盒模型的子空間數值系統鑑別方法比較,建立系統輸入與輸出的模型關係,驗證模型擬合誤差於合理範圍之內。將實驗訊號應用於模型當中,推估馬達轉動系統之電流輸出,建立電流殘差頻譜基線,觀察異常訊號之殘差頻譜與參數叢集,透過信賴區間檢定判斷出設備的狀況。


Rotating machine is important in our daily life, such as applications in the industrial convey belt, automated manufacturing or electric vehicle. Most of them are driven by electrical motors. In order to prevent the economic losses and safety hazards caused by the unexpected failure of the rotating machine, Fault Detection and Diagnosis (FDD) is a critical function to be implemented for these machines. Moreover, FDD is much easier to be accomplished with modern hardware and internet structure such as AIOT and edge computing. The preliminary FDD employs the traditional signal analysis method using motor running data collected from accelerometers, current transformers, etc.. However, it is challenging to detect incipient faults or developing faults under low motor loading using signal analysis FDD. In addition, the noise in the collected raw signal makes signal analysis even more difficult and costly. To alleviate these disadvantages, a Recursive Least Square (RLS) model based approach is employed for the Permanent Magnet Synchronous Motor (PMSM) transmission fault detection in this research. Three different types of transmission mechanism are investigated for healthy condition and different fault level conditions. An equivalent 2nd order mechanical model is augmented in the PMSM model to depict mechanical transmission and load for the purpose of the model based FDD. The motor-transmission-load system is considered in quasi steady state in this research since the load is just a constant resistor. The parameters in the physical model are identified using RLS and the result compared with a black box approach using Numerical algorithm for Subspace Identification (N4SID). The model predicted motor current is compared with measured current to generate current residual. The experiment data for healthy condition is used to construct current residual spectrum baseline and parameter clustering. Together, the current residual spectrum baseline and the parameter clustering range are used to detect PMSM transmission faults.

摘要 ii Abstract iii 誌謝 v 目錄 vi 表目錄 ix 圖目錄 xi 第一章 緒論 1 1.1 前言動機與研究目的 1 1.2 文獻回顧 2 1.2.1 故障偵測與診斷策略 2 1.2.2 馬達異常訊號式分析 3 1.2.3 系統鑑別 4 1.2.4 馬達異常模型式分析 5 1.3 模型式故障診斷概念與優勢 7 1.4 論文架構 8 第二章 理論基礎 9 2.1 永磁馬達模型 9 2.1.1 座標軸轉換 9 2.1.2 永磁馬達數學模型 12 2.1.3 模型離散化 14 2.1.4 系統穩定分析 15 2.2 系統鑑別 17 2.2.1 遞迴最小平方法 17 2.2.2 子空間數值系統鑑別 19 2.3 持續刺激條件 23 2.4 快速傅立葉轉換 24 2.5 永磁馬達傳動異常電流特徵 25 2.5.1 齒輪 25 2.5.2 皮帶 25 2.5.3 鏈輪 26 2.6 統計檢定 26 2.7 殘差頻譜 28 第三章 實驗設計與規劃 31 3.1 實驗設備與平台 31 3.2 故障診斷分析流程 36 3.3 資料前處理 39 3.4 遞迴最小平方法估測參數 42 3.5 靜止座標軸與旋轉座標軸殘差頻譜比較 47 3.6 建立殘差頻譜基線 49 第四章 傳動異常訊號式分析 51 4.1 電流與振動分析 51 4.2 掃頻分析 56 4.3 訊號式分析基線 60 第五章 電壓電流模型式殘差分析 61 5.1 殘差頻譜分析 61 5.1.1 齒輪殘差頻譜 62 5.1.2 皮帶殘差頻譜 73 5.1.3 鏈輪殘差頻譜 77 5.2 不同負載基準之殘差分析結果 85 第六章 電壓電流模型式參數分析 90 6.1 齒輪參數叢集 91 6.2 皮帶參數叢集 94 6.3 鏈輪參數叢集 95 第七章 結論與未來展望 97 7.1 結果討論 97 7.2 研究貢獻 99 7.3 未來展望 100 參考文獻 102 附錄一-子空間系統鑑別 109 附錄二-馬達平均參數表 131

[ 1 ] H. Kim, J. Son and J. Lee, "A High-Speed Sliding-Mode Observer for the Sensorless Speed Control of a PMSM," in IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4069-4077, Sept. 2011, doi: 10.1109/TIE.2010.2098357.
[ 2 ] A. T. de Almeida, F. J. T. E. Ferreira and G. Baoming, "Beyond Induction Motors—Technology Trends to Move Up Efficiency," in IEEE Transactions on Industry Applications, vol. 50, no. 3, pp. 2103-2114, May-June 2014, doi: 10.1109/TIA.2013.2288425.
[ 3 ] M. Yousefi kia, M. Khedri, H. Najafi and M. Shamsi Nejad, "Hybrid modelling of doubly fed induction generators with inter‐turn stator fault and its detection method using wavelet analysis", IET Generation, Transmission & Distribution, vol. 7, no. 9, pp. 982-990, 2013. Available: 10.1049/iet-gtd.2012.0491.
[ 4 ] P. Waidei and C. U. Brunner. “Energy-Efficiency Policy Opportunities for Electric Motor Driven System”. IEA, 2011.
[ 5 ] 台灣電力股份有限公司, “台灣電力公司歷年發購電量(能源別)及售電量(用途別)”, 政府資料開放平台, 2020
[ 6 ] 經濟部技術處, “重要產業技術-工業能源智慧化”, 台灣經濟研究院, 2020
[ 7 ] G. Singh, T. Anil Kumar and V. Naikan, "Efficiency monitoring as a strategy for cost effective maintenance of induction motors for minimizing carbon emission and energy consumption", Reliability Engineering & System Safety, vol. 184, pp. 193-201, 2019. Available: 10.1016/j.ress.2018.02.015.
[ 8 ] T. Marcic, B. Stumberger, G. Stumberger, M. Hadziselimovic, P. Virtic and D. Dolinar, "Line-Starting Three- and Single-Phase Interior Permanent Magnet Synchronous Motors—Direct Comparison to Induction Motors," in IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 4413-4416, Nov. 2008, doi: 10.1109/TMAG.2008.2001537.
[ 9 ] N. Rajput, “Permanent magnet motor market – global opportunity analysis and industry forecast, 2013-2020”, AMR ,2015
[ 10 ] Z. Gao, C. Cecati and S. X. Ding, "A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches," in IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3757-3767, June 2015, doi: 10.1109/TIE.2015.2417501.
[ 11 ] Z. Gao, C. Cecati and S. X. Ding, "A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part II: Fault Diagnosis With Knowledge-Based and Hybrid/Active Approaches," in IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3768-3774, June 2015, doi: 10.1109/TIE.2015.2419013.
[ 12 ] S. X. Ding, “Model-based fault diagnosis techniques: design schemes, algorithms, and tools”. Springer Science & Business Media, 2008.
[ 13 ] N. Mehla and R. Dahiya, “An approach of condition monitoring of induction motor using MCSA”, International journal of systems applications, Engineering and development, 1(1), 13-17, 2007.
[ 14 ] K. S. Gaeid, H. W. Ping, M. Khalid & A. L. Salih, “Fault diagnosis of induction motor using MCSA and FFT”, Electrical and Electronic Engineering, 1(2), 85-92, 2011
[ 15 ] N. Mehala & Dahiya, R. (2007). Motor current signature analysis and its applications in induction motor fault diagnosis. International journal of systems applications, engineering & development, 2(1), 29-35.
[ 16 ] D. Zogg, E. Shafai and H. Geering, "Fault diagnosis for heat pumps with parameter identification and clustering", Control Engineering Practice, vol. 14, no. 12, pp. 1435-1444, 2006. Available: 10.1016/j.conengprac.2005.11.002.
[ 17 ] Y. Chen, S. Liang, W. Li, H. Liang and C. Wang, "Faults and Diagnosis Methods of Permanent Magnet Synchronous Motors: A Review", Applied Sciences, vol. 9, no. 10, p. 2116, 2019. Available: 10.3390/app9102116.
[ 18 ] B. Cai, Y. Zhao, H. Liu and M. Xie, "A Data-Driven Fault Diagnosis Methodology in Three-Phase Inverters for PMSM Drive Systems," in IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5590-5600, July 2017, doi: 10.1109/TPEL.2016.2608842.
[ 19 ] X. Song, Z. Wang and J. Hu, "Detection of Bearing Outer Race Fault in Induction Motors using Motor Current Signature Analysis," 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), 2019, pp. 1-5, doi: 10.1109/ICEMS.2019.8922036.
[ 20 ] J. Pons-Llinares, J. A. Antonino-Daviu, M. Riera-Guasp, S. Bin Lee, T. Kang and C. Yang, "Advanced Induction Motor Rotor Fault Diagnosis Via Continuous and Discrete Time–Frequency Tools," in IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1791-1802, March 2015, doi: 10.1109/TIE.2014.2355816.
[ 21 ] J. A. Antonino-Daviu, M. Riera-Guasp, M. Pineda-Sanchez and R. B. Perez, "A Critical Comparison Between DWT and Hilbert–Huang-Based Methods for the Diagnosis of Rotor Bar Failures in Induction Machines," in IEEE Transactions on Industry Applications, vol. 45, no. 5, pp. 1794-1803, Sept.-oct. 2009, doi: 10.1109/TIA.2009.2027558.
[ 22 ] J. Rosero, J. L. Romeral, J. Cusido, J. A. Ortega and A. Garcia, "Fault detection of eccentricity and bearing damage in a PMSM by means of wavelet transforms decomposition of the stator current," 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, 2008, pp. 111-116, doi: 10.1109/APEC.2008.4522708.
[ 23 ] K. Gyftakis, A. Marques Cardoso and J. Antonino-Daviu, "Introducing the Filtered Park’s and Filtered Extended Park’s Vector Approach to detect broken rotor bars in induction motors independently from the rotor slots number", Mechanical Systems and Signal Processing, vol. 93, pp. 30-50, 2017. Available: 10.1016/j.ymssp.2017.01.046.
[ 24 ] M. A. S. Nejad and M. Taghipour, "Inter-turn stator winding fault diagnosis and determination of fault percent in PMSM," 2011 IEEE Applied Power Electronics Colloquium (IAPEC), 2011, pp. 128-131, doi: 10.1109/IAPEC.2011.5779847.
[ 25 ] M. Verhaegen and V. Verdult,”Filtering and system identification”. Cambridge: Cambridge University Press, 2012.
[ 26 ] P. Van Overschee and B. De Moor, "N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems", Automatica, vol. 30, no. 1, pp. 75-93, 1994. Available: 10.1016/0005-1098(94)90230-5.
[ 27 ] H. Ahn, H. Park, C. Kim and H. Lee, "A Review of State-of-the-art Techniques for PMSM Parameter Identification", Journal of Electrical Engineering & Technology, vol. 15, no. 3, pp. 1177-1187, 2020. Available: 10.1007/s42835-020-00398-6.
[ 28 ] S. Morimoto, M. Sanada and Y. Takeda, "Mechanical Sensorless Drives of IPMSM With Online Parameter Identification," in IEEE Transactions on Industry Applications, vol. 42, no. 5, pp. 1241-1248, Sept.-Oct. 2006, doi: 10.1109/TIA.2006.880840.
[ 29 ] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, "Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory," in IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 363-372, April 2006, doi: 10.1109/TIE.2006.870875.
[ 30 ] H. Neugebauer, ”Parameter identification of a permanent magnet synchronous motor”(Master's thesis), 2012
[ 31 ] Y. Shi, K. Sun, L. Huang and Y. Li, "Online Identification of Permanent Magnet Flux Based on Extended Kalman Filter for IPMSM Drive With Position Sensorless Control," in IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4169-4178, Nov. 2012, doi: 10.1109/TIE.2011.2168792.
[ 32 ] H. Sim, J. Lee and K. Lee, "On-line Parameter Estimation of Interior Permanent Magnet Synchronous Motor using an Extended Kalman Filter", Journal of Electrical Engineering and Technology, vol. 9, no. 2, pp. 600-608, 2014. Available: 10.5370/jeet.2014.9.2.600.
[ 33 ] T. Chan, P. Borsje and Weimin Wang, "Application of Unscented Kalman filter to sensorless permanent-magnet synchronous motor drive," 2009 IEEE International Electric Machines and Drives Conference, 2009, pp. 631-638, doi: 10.1109/IEMDC.2009.5075272.
[ 34 ] K. Kampisios, P. Zanchetta, C. Gerada and A. Trentin, "Identification of Induction Machine Electrical Parameters Using Genetic Algorithms Optimization," 2008 IEEE Industry Applications Society Annual Meeting, 2008, pp. 1-7, doi: 10.1109/08IAS.2008.165.
[ 35 ] Wenxin Liu, Li Liu and D. A. Cartes, "Efforts on real-time implementation of PSO based PMSM parameter identification," 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 1-7, doi: 10.1109/PES.2008.4596324.
[ 36 ]張書慈, ”永磁同步馬達參數識別及模型式故障檢知”碩士論文, 國立台灣科技大學, 2020
[ 37 ]徐維廷, ”基於啟發式演算法於感應馬達系統識別及故障偵測”碩士論文, 國立台灣科技大學, 2020
[ 38 ] Y. Laamari, K. Chafaa and B. Athamena, "Particle swarm optimization of an extended Kalman filter for speed and rotor flux estimation of an induction motor drive", Electrical Engineering, vol. 97, no. 2, pp. 129-138, 2014. Available: 10.1007/s00202-014-0322-1.
[ 39 ] R. Corteletti, P. R. Barros and A. M. N. Lima, "Parameters estimation of induction motor using subspace methods," 2003 IEEE International Symposium on Industrial Electronics ( Cat. No.03TH8692), 2003, pp. 667-671 vol. 2, doi: 10.1109/ISIE.2003.1267899.
[ 40 ] G. H. B. Foo, X. Zhang and D. M. Vilathgamuwa, "A Sensor Fault Detection and Isolation Method in Interior Permanent-Magnet Synchronous Motor Drives Based on an Extended Kalman Filter," in IEEE Transactions on Industrial Electronics, vol. 60, no. 8, pp. 3485-3495, Aug. 2013, doi: 10.1109/TIE.2013.2244537.
[ 41 ] N. Zhou, H. He, Z. Liu and Z. Zhang, "UKF-based Sensor Fault Diagnosis of PMSM Drives in Electric Vehicles", Energy Procedia, vol. 142, pp. 2276-2283, 2017. Available: 10.1016/j.egypro.2017.12.630.
[ 42 ] K. S. Gaeid & H. W. Ping, Induction motor fault detection and isolation through unknown input observer. Scientific Research and Essays, 5(20), 3152-3159,2010
[ 43 ] R. Shahnazi, Q. Zhao, A. H. A. Sari and T. Jeinsch, "Dynamic nonlinear unknown input observer for fault detection of induction motors," 2015 23rd Iranian Conference on Electrical Engineering, 2015, pp. 823-828, doi: 10.1109/IranianCEE.2015.7146326.
[ 44 ] B. Park, R. Kim and D. Hyun, "Fault diagnosis using recursive least square algorithm for permanent magnet synchronous motor drives," 8th International Conference on Power Electronics - ECCE Asia, 2011, pp. 2506-2510, doi: 10.1109/ICPE.2011.5944729.
[ 45 ] M. Heydarzadeh, M. Zafarani, E. Ugur, B. Akin and M. Nourani, "A model-based signal processing method for fault diagnosis in PMSM machine," 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 2017, pp. 3160-3164, doi: 10.1109/ECCE.2017.8096575.
[ 46 ] 黃仲欽 教授, ”電機機械”上課講義, 國立台灣科技大學, 2019
[ 47 ] N. NISE,”CONTROL SYSTEMS ENGINEERING”. [S.l.]: JOHN WILEY, 2020.
[ 48 ] G. Franklin, J. Powell and M. Workman,”Digital control of dynamic systems”. Half-Moon Bay, CA: Ellis-Kagle Press, 1998.
[ 49 ] J. Crassidis and J. Junkins, Optimal estimation of dynamic systems. Boca Raton: CRC Press, 2012.
[ 50 ] 劉孟昆 教授, ”非線性訊號處理”上課講義, 國立台灣科技大學, 2020
[ 51 ] J. Dongarra & F. Sullivan, “Guest editors' introduction: The top 10 algorithms”, IEEE Annals of the History of Computing, 2000, 2(01), 22-23.
[ 52 ] BSI standards publication. Condition monitoring and diagnostics of machine systems-Electrical signature analysis of three-phase induction motors, BS ISO 20958:2013
[ 53 ] S. Rajagopalan, T. Habetler, R. Harley, T. Sebastian and B. Lequesne, "Current/Voltage-Based Detection of Faults in Gears Coupled to Electric Motors", IEEE Transactions on Industry Applications, vol. 42, no. 6, pp. 1412-1420, 2006. Available:10.1109/tia.2006.882636.
[ 54 ] T. Kang, C. Yang, Y. Park, S. B. Lee and M. Teska, "Electrical monitoring of mechanical defects in induction motor driven V-belt-pulley speed reduction couplings," 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 2017, pp. 293-300, doi: 10.1109/ECCE.2017.8095795.
[ 55 ] 方世榮、張文賢, ”統計學導論第七版”, 華泰文化
[ 56 ] D. Zogg, E. Shafai and H. Geering, "Fault diagnosis for heat pumps with parameter identification and clustering", Control Engineering Practice, vol. 14, no. 12, pp. 1435-1444, 2006. Available: 10.1016/j.conengprac.2005.11.002.
[ 57 ] 陳志忠, “感應交流馬達旋轉設備振動特徵分析”碩士論文, 國立台灣科技大學, 2017

無法下載圖示 全文公開日期 2026/08/06 (校內網路)
全文公開日期 2026/08/06 (校外網路)
全文公開日期 2026/08/06 (國家圖書館:臺灣博碩士論文系統)
QR CODE