研究生: |
李易倫 YI-LUN LEE |
---|---|
論文名稱: |
利用半導體光放大器抑制寬頻譜光源雜訊之10 Gb/s對稱傳輸遠端泵激分波多工被動光網路架構 Noise Suppression of ASE Source Using a Gain-Saturated Cascaded SOA Method for Symmetric 10 Gb/s Remotely Pumped WDM PON Systems |
指導教授: |
李三良
San-Liang Lee |
口試委員: |
廖顯奎
Shien-Kuei Liaw 曹恆偉 Hen-Wai Tsao 吳靜雄 Jing-Shown Wu 楊淳良 Chun-Liang Yang |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 電子工程系 Department of Electronic and Computer Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 非同調光源 、分波多工被動光網路 、半導體光放大器 、過強度雜訊抑制 、寬頻譜光源 、自發性拍差雜訊 |
外文關鍵詞: | incoherent light, excess intensity noise suppression, broadband source |
相關次數: | 點閱:359 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一整合自發放射光源與半導體光放大器且利用遠端泵激之分波多工被動光網路系統,實現上下行10 Gb/s對稱傳輸。吾人將寬頻譜光源放置於局端利用分波多工器將自發放射光源做頻譜分配,經由半導體光放大器抑制寬頻譜光源過強度雜訊,可有效改善寬頻譜光源訊號雜訊比限制,且利用大有效面積光纖降低色散效應對系統的影響,以達到25公里傳輸距離。此外用戶端透過交互作種架構與利用反射式調變器提供上行光源與訊號調變,可充分利用降雜訊的寬頻譜光源作為上行傳輸使用。
為補償上下行被動元件及調變造成之功率損耗,利用遠端泵激架構,在遠端補償光路損失,以提升上下行光訊號強度,並實現上下行各32通道之被動光網路架構。實驗結果顯示,利用自發放射光源作經分波多工器做頻譜分配,利用遠端泵激架構可達共計320 Gb/s之雙向傳輸。
We propose and demonstrate a remotely pumped WDM-PON architecture to achieve 10 Gb/s symmetrical transmission. In this scheme, a wideband amplified spontaneous emission (ASE) from an optical amplifier is sliced into multiple channels by an arrayed waveguide grating (AWG) and used as multi-channel optical sources for WDM-PON system. Each channel is noise suppressed by using a gain-saturated cascaded semiconductor optical amplifer (SOA) and then modulated at 10.7 Gb/s, assuming forward error correction (FEC) with 7% overheads. We also propose a cross-seeding scheme to provide uplink seeding light and use a reflected electro-absorption modulator (REAM) to encode the upstream signals. In order to achieve a transmission up to 25 km distance, we use a larger effective area fiber (LEAF) to reduce the dispersion effect. To compensate the loss by passive components and modulation, we employ a remotely pumped erbium-doped fiber amplifier (RP-EDFA) to provide extra gain for both downstream and upstream signals. The experimental results show that the downstream and upstream transmission can provide 10 Gb/s data rate over 25 km for 32 channels, which corresponds to a total capacity of 320 Gb/s, on each direction.
[1]Joseph C. Palais, Fiber optic Communications, Pearson/Prentice Hall, 2005.
[2]張勝雄,楊慶忠,光解多工器濾波技術之介紹,遠東學報第二十卷第三期民國九十二年六月。
[3]M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “ LED spectral slicing for single- mode local Loop application,” Electron. Lett., Vol. 24, pp. 389-390, 1988.
[4]T. E. Chapuran, S. S. Wagner, R. C. Menendez, H. E. Tohme, and L. A. Wang, “Broadband multichannel WDM transmission with superluminescent diodes and LEDs,” Globecom., Vol. 1, pp. 613-618, 1991.
[5]朱肇易,利用自發性放射光源之雙向傳輸遠端泵激分波多工被動光網路架構,國立台灣科技大學電子工程所碩士論文,2013年。
[6]J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier Light source for multichannel WDM applications,” IEEE Photo. Technol. Lett., Vol. 5, No. 12, pp. 1458-1461, 1993.
[7]A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise suppression of incoherent light using a gain-saturated SOA: Implications for spectrum-sliced WDM systems,” IEEE J. Lightw. Technol., Vol. 23, No. 8, pp. 2399–2409, Aug. 2005.
[8]H. H. Lee, S. H. Cho, J. H. Lee, E. S. Jung, J. H. Yu, B. W. Kim, S. S. Lee, S. H. Lee, J. S. Koh, B. H. Sung, S. J. Kang, J. H. Kim, and K. T. Jeong, “First Commercial Service of a Colorless Gigabit WDM/TDM Hybrid PON System,” Proceeding OSA/OFC/NFOEC, pp. 1-3, Mar. 2009.
[9]J. H. Yu, K. Nam, and W. K. Byoung, “Remodulation schemes with reflective SOA for Colorless DWDM PON,” J. of Optical Networking, Vol. 6, No. 8, pp. 1041-1054, 2007.
[10]S. Kobayashi, J. Yamada, S. Machida, and T. Kimura, “Single-mode operation of 500 Mbit/s moducated AlGaAs semiconductor laser by injection locking,” Electron. Lett., Vol. 16, No. 19, pp.746-748, 1980.
[11]H. D. Kim, S. Kang, and C. Lee, “A Low-Cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett., Vol.12, No. 8. pp. 1067-1069, 2000.
[12]C. H. Kim, J. H. Lee, D. K. Jung, Y. G. Han, and S. B. Lee, “Performance Comparison of directly-modulated, wavelength Locked Fabry-Pérot laser diode and EAM-modulated, spectrum-sliced ASE source for 1.25 Gb/s WDM-PON,” Proceeding OFC/NFOEC, Mar. 2007.
[13]J. H. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, “Raman amplification- based WDM-PON architecture with centralized Raman pump-driven, spectrum-sliced erbium ASE and polariation-insensitive EAMs,” Optics Express, Vol. 14, No. 20, pp. 9036-9041, 2006.
[14]H. D. Kim, S.-G. Kang, and C. H. Lee, “A Low-Cost WDM Source with an ASE Injected Fabry-Perot Semiconductor Laser,” IEEE Photon. Technol. Lett., Vol. 12, No. 8, pp. 1067-1069, 2000.
[15]林昶佑,基於自發放射光源與遠端泵浦光放大的分波多工被動光網路架構,國立台灣科技大學電子工程所碩士論文,2012年。
[16]D. J. Shin, D. K. Jung, H. S. Shin, J. W. Kwon, S. Hwang, Y. Oh, and C. Shim, “Hybrid WDM/TDM-PON with wavelength selection free transmitters,” J. Lightw. Technol., Vol. 23, No. 1, pp. 187-195, 2005.
[17]J. H. Lee, C. H. Kim, Y.-G. Han, and S. B. Lee, “WDM-based passive optical network upstream transmission at 1.25 Gb/s using Fabry-Perot laser diodes injected with spectrum-sliced, depolarized, continuous-wave supercontinuum source,” IEEE Photon. Technol. Lett., Vol. 18, No. 20, pp. 2108-2110, 2006.
[18]H. H. Lee, S.-H. Cho, and S. S. Lee, “Efficient excess intensity noise suppression of 100-GHz spectrum-sliced WDM-PON with a narrow bandwidth seed light source,” IEEE Photon. Technol. Lett., Vol. 22, No. 20, pp. 1542-1544, 2010.
[19]S.-H. Cho, J. H. Lee, J. H. Lee, E.-G. Lee, H.-H. Lee, E.-S. Jung, and S. S. Lee, “Improving transmission performance in EIN limited 2.5-Gb/s spectral slicing loopback WDM-PON based on RSOA employing the dispersion management,” in Proc. International Conference on Optical Internet (COIN), 2010.
[20]S. Kaneko, J.-I. Kani, K. Iwatsuki, A. Ohki, M. Sugo, and S. Kamei, “Scalability of spectrum-sliced DWDM transmission and its expansion using forward error correction,” J. Lightw. Technol., Vol. 24, No. 3, pp. 1295-1301, 2006.
[21]W. Mathlouthi, F. Vacondio, and L. A. Rusch, “High-bit-rate dense SS- WDM PON using SOA-based noise reduction with a novel balanced detection,” J. Lightw. Technol., Vol. 27, No. 22, pp. 5045-5055, 2009.
[22]Z. Al-Qazwini and H. Kim, “Ultranarrow Spectrum-Sliced Incoherent Light Source for 10-Gb/s WDM PON,” J. Lightw. Technol., Vol. 30, No. 3, Oct. 2012.
[23]J. Y. Kim, S. H. Yoo, S. R. Moon, D. C. Kim, and C. H. Lee, “400Gb/s (40 × 10 Gb/s) ASE injection seeded WDM-PON based on SOA- REAM,” in Proc. Optical Fiber Communication Conference (OFC), paper OWD 4.4, 2013.
[24]J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier Light source for multichannel WDM applications,” IEEE Photon. Technol. Lett., Vol. 5, No. 12, pp. 1458-1461, 1993.
[25]原榮,鄔文杰,陳積德,宋馭民,劉正瑜,光纖通訊系統-原理與應用,新文京開發出版股份有限公司,民國93年。
[26]G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron., Vol. 25, pp. 2297–2306, 1989.
[27]K. Sato and H. Toba, “Reduction of Mode Partition Noise by Using Semiconductor Optical Amplifiers” IEEE J. Quantum Electron., Vol. 7, No. 2, Mar./Apr. 2001.
[28]G. V. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron., Vol. 25, No. 11, pp. 2297–2306, Nov. 1989.
[29]M. Shtaif and G. Eisenstein, “Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit,” IEEE J. Quantum Electron., Vol. 32, pp. 1801–1809, Oct. 1996.
[30]A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise suppression of incoherent light using a gain-saturated SOA: Implications for spectrum-sliced WDM systems,” IEEE J. Lightw. Technol., Vol. 23, No. 8, pp. 2399–2409, Aug. 2005.
[31]H. Kim, S. Kim, S. Hwang, and Y. Oh, “Impact of Dispersion, PMD, and PDL on the Light Sources Using Gain-Saturated Semiconductor Optical Amplifiers” IEEE J. Lightw. Technol., Vol. 24, No. 2, Feb. 2006.
[32]K. Seki, K. Mikami, A. Katayama, S. Suzuki, N. Shinohara, and M. Nakabayashi, “Single-chip FEC codec using a concatenated BCH code for 10Gbps LH optical transmission systems,” in Proc. IEEE Custom Integr. Circuits Conf. pp. 279–282, 2003.
[33]A. Tychopoulos, O. Koufopavlou, and I. Tomkos, “FEC in optical communications,” IEEE Circuits Dev. Mag., Vol. 22, No. 6, pp. 79–86, Nov./Dec. 2006.
[34]J. S. Lee, Y. C. Chung and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier Light source for multichannel WDM applications,” IEEE Photon. Technol. Lett., Vol. 5, No. 12, pp. 1458-1461, 1993.