簡易檢索 / 詳目顯示

研究生: 陳家銘
Chia-Ming Chen
論文名稱: 設計製作應用於光閘開關之增益箝制半導體光放大器
Design and fabrication of gain clamped semiconductor optical amplifiers for optical switching applications
指導教授: 李三良
San-Liang Lee
口試委員: 張嘉男
Chia-Nan Chang
曹恆偉
Hen-Wei Zao
何文章
Wen-Chang Ho
毛明華
Ming-Hwa Mao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 90
中文關鍵詞: 增益箝制半導體光放大器
外文關鍵詞: semiconductor optical amplifiers
相關次數: 點閱:201下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究設計與製作應用於光交換開關之增益箝制半導體光放大器,使其能應用在高密度分波多工或低密度分波多工之光纖網路交換系統中。在理論部分,主要說明增益箝制式半導體光大器與傳統半導體光放大器的差異。模擬上則是針對材料增益特性、極化相關性、監控用雷射特性、半導體光放大器增益表現、極化相關增益特性、以及分佈布拉格反射鏡等做分析比較,並使用彎曲波導降低端面反射率等方面設計。在實驗結果方面,成功製作出增益為17 dB的半導體光放大器,在增益箝制半導體光放大器方面則可將增益箝制在11 dB。輸入飽和功率約可達7 dBm,並改善在高輸入功率下的增益飽和。極化相關增益差值約在3 dB。


    In this thesis, we present the design and fabrication of gain-clamped semiconductor optical amplifiers (GC-SOA) for optical switching networks. Semiconductor optical amplifiers will play an important role in future WDM transmission systems. However, their low output saturation power, large noise figure, and gain saturation induced signal crosstalk have been the main obstacles for practical applications in WDM systems.
    A gain-clamping mechanism can be realized by using the DFB or DBR-based structure and such a SOA is well known as gain-clamped semiconductor optical amplifier. We used tensile strain quantum wells to compensate the polarization dependent gain. Different lengths of DBR grating are formed on both side of the active region in order to compensate the nonuniformity carrier distribution in the longitudinal direction. To suppress the cavity resonant, S-bend waveguides are integrated on the input/output regions.
    The measured results show that the gain peak of GC-SOA locates at 1540 nm; and the lasing oscillation is at 1502nm. Chip gain for 1500μm- and 1000μm-long SOA is 17 dB and 10 dB, respectively. For 1500μm-long GC-SOA, the chip gain is clamped at 11 dB with an input saturation power of 7 dBm. The polarization-dependent gain fluctuation is about 3 dB.

    目次 中文摘要----------------------------------------------------------Ⅰ 英文摘要----------------------------------------------------------Ⅱ 誌謝-----------------------------------------------------------------------------------------Ⅲ 圖表索引----------------------------------------------------------Ⅵ 第一章 簡介----------------------------------------------------------1 1-1 簡介-------------------------------------------------------------------------------1 1-2半導體光放大器-----------------------------------------------------------------4 1-3 改善半導體光放大器的方法-------------------------------------------------6 1-4研究動機--------------------------------------------------------------------------8 1-5論文架構--------------------------------------------------------------------------9 第二章 增益箝制半導體光放大器原理------------------------------------10 2-1半導體光放大原理--------------------------------------------------10 2-1-1 SOA工作原理------------------------------------------------10 2-1-2增益與頻寬----------------------------------------------------10 2-1-3雜訊-------------------------------------------------------13 2-2 GC-SOA原理與設計---------------------------------------------------------15 2-2-1基本結構與簡介-----------------------------------------------15 2-2-2 GC-SOA理論-------------------------------------------------16 2-2-3 GC-SOA設計-------------------------------------------------19 2-3降低反射率---------------------------------------------------------------------22 2-3-1 抗反射鍍膜---------------------------------------------------22 2-3-2 傾斜波導------------------------------------------------------23 2-3-3 彎曲型波導------------------------------------------------------------24 第三章 模擬與分析------------------------------------------------------------26 3-1 模擬軟體與簡介-----------------------------------------------------26 3-2 主動層材料模擬-----------------------------------------------------27 3-3 材料增益對極化相關模擬-----------------------------------------32 3-4 DBR結構模擬-------------------------------------------------35 3-5 彎曲波導模擬----------------------------------------------------38 3-6 半導體光放大器模擬-----------------------------------------------39 第四章 製程----------------------------------------------------------42 4-1 增益箝制半導體光放大器製程-----------------------------------42 4-2製程結果----------------------------------------------------------48 4-3製程討論----------------------------------------------------------54 第五章 元件量測與討論------------------------------------------------------55 5-1量測系統與雙邊耦光架設------------------------------------------55 5-2基本元件量測結果---------------------------------------------------58 5-2-1監控用雷射之量測結果---------------------------------------58 5-2-2含彎曲波導之半導體光放大器量測----------------------61 5-2-3含彎曲波導之半導體光放大器之增益量測-------------64 5-2-4 增益箝制半導體光放大器量測---------------------------71 5-3半導體光放大器之增益飽和量測---------------------------------80 5-4半導體光放大器之極化相關量測---------------------------------81 第六章 結論---------------------------------------------------------------83 6-1成果與討論------------------------------------------------------------83 6-2未來研究方向---------------------------------------------------------86 參考文獻--------------------------------------------------------------------------87 作者簡介--------------------------------------------------------------------------90 圖表索引 圖1-1光網路波長分工類別-------------------------------------------------------------3 圖1-2半導體光放大器示意圖----------------------------------------------------------4 圖1-3半導體載子傳輸種類示意圖----------------------------------------------------5 圖1-4漸變式波導種類示意圖----------------------------------------------------------7 圖1-5光電元件整合示意圖-------------------------------------------------------------8 圖1-6研究流程示意圖-------------------------------------------------------------------9 圖2-1增益箝制半導體光放大器內部載子數與增益示意圖---------------------15 圖2-2以DBR為基礎之增益箝制半導體光放大器(俯視圖)--------------------16 圖2-3以DBR為基礎之增益箝制半導體光放大器(側視圖)---------------------16 圖2-4材料增益圖------------------------------------------------------------------------21 圖2-5傾斜波導結構示意圖------------------------------------------------------------24 圖2-6彎曲波導結構示意圖------------------------------------------------------------25 圖3-1元件能帶分佈圖------------------------------------------------------------------29 圖3-2不同元件長度下監控用雷射功率輸出特性---------------------------------30 圖3-3 1500μm監控用雷射頻譜輸出圖----------------------------------------------30 圖3-4不同量子井數目下的光場分佈圖---------------------------------------------31 圖3-5不同波導寬度下對光場侷限的影響------------------------------------------31 圖3-6一般量子井雷射結構的材料增益圖------------------------------------------32 圖3-7經舒張應力磊晶調整材料增益比較圖---------------------------------------33 圖3-8設計製作之光放大器放大波段------------------------------------------------34 圖3-9簡易模擬示意圖------------------------------------------------------------------35 圖3-10不同長度DBR雷射輸出功率圖----------------------------------------------35 圖3-11長度1000μm之DBR雷射頻譜圖-------------------------------------------36 圖3-12長度1500μm之DBR雷射頻譜圖-------------------------------------------36 圖3-13不同DBR長度結構中光場強度分佈圖------------------------------------38 圖3-14不同曲率半徑及彎曲角度在波導中的損耗模擬圖----------------------39 圖3-15不同長度之放大器在橫向電場下的增益表現----------------------------40 圖3-16不同模態下放大器的增益表現----------------------------------------------40 圖3-17不同波長對半導體光放大器極化增益表現-------------------------------41 圖4-1光罩設計示意圖------------------------------------------------------------------42 圖4-2主被動區域與DBR區域俯視圖----------------------------------------------49 圖4-3脊狀波導俯視圖------------------------------------------------------------------50 圖4-4彎曲脊狀波導俯視圖------------------------------------------------------------50 圖4-5彎曲漸變式脊狀波導俯視圖---------------------------------------------------51 圖4-6電子顯微鏡下光柵區域俯視圖------------------------------------------------51 圖4-7電子顯微鏡下光柵區域側視圖------------------------------------------------52 圖4-8 P型金屬蒸鍍後俯視圖----------------------------------------------------------52 圖4-9脊狀波導在電子顯微鏡下側視圖---------------------------------------------53 圖4-10漸變式彎曲脊狀波導在電子顯微鏡下側視圖----------------------------53 圖5-1雙邊耦合架設示意圖------------------------------------------------------------55 圖5-2實際雙邊耦合架設系統---------------------------------------------------------56 圖5-3雙邊耦合角度的估算------------------------------------------------------------57 圖5-4長度為1000μm之監控雷射電流-功率圖------------------------------------59 圖5-5長度為1500μm之監控雷射電流-功率圖------------------------------------59 圖5-6長度為1500μm之監控變溫下雷射電流-功率圖---------------------------60 圖5-7長度為1500μm之監控雷射頻譜圖-------------------------------------------60 圖5-8長度為1500μm之半導體光放大器功率輸出圖----------------------------61 圖5-9 1500μm長之半導體光放大器自發性放大頻譜圖-------------------------62 圖5-10 1500μm長之半導體光放大器漣波效益頻譜圖---------------------------63 圖5-11增益係數與透明電流關係圖--------------------------------------------------65 圖5-12準費米階變化圖(a)透明點下(b)透明點上----------------------------------66 圖5-13透明電流量測系統架構圖----------------------------------------------------66 圖5-14半導體光放大器之透明電流分佈圖----------------------------------------67 圖5-15長度1500μm之半導體光放大器輸出功率圖-----------------------------68 圖5-16長度1500μm之半導體光放大器電流-模態增益圖----------------------69 圖5-17長度1500μm之半導體光放大器電流-增益圖-----------------------------70 圖5-18長度1000μm之半導體光放大器電流-增益圖----------------------------71 圖5-19長度1000μm之增益箝制光放大器電流-輸出功率圖-------------------72 圖5-20長度1000μm之增益箝制光放大器雷射頻譜輸出圖--------------------72 圖5-21長度1000μm之增益箝制光放大器頻譜輸出圖--------------------------73 圖5-22長度1500μm之增益箝制光放大器電流-輸出功率圖--------------------73 圖5-23長度1500μm之增益箝制光放大器雷射頻譜輸出圖--------------------74 圖5-24長度1500μm之增益箝制半導體光放大器頻譜輸出圖-----------------74 圖5-25長度1500μm之增益箝制光放大器自發性放射頻譜圖-----------------75 圖5-26長度1500μm之增益箝制半導體光放大器功率輸出圖------------------76 圖5-27長度1500μm之增益箝制半導體光放大器增益輸出圖-----------------77 圖5-28長度1000μm之增益箝制半導體光放大器功率輸出圖------------------78 圖5-29長度1000μm之增益箝制半導體光放大器增益輸出圖------------------79 圖5-30半導體光放大器增益飽和輸出圖-------------------------------------------80 圖5-31半導體光放大器極化相關量測設置圖-------------------------------------81 圖5-32半導體光放大器極化相關功率輸出圖-------------------------------------82 圖5-33半導體光放大器極化相關增益輸出圖-------------------------------------82 圖6-1利用濕蝕刻製作垂直方向漸變式波導---------------------------------------84 圖6-2使用選擇性區域磊晶與量子井混和技術製程------------------------------85 表1-1半導體光放大器與摻鉺光纖放大器比較表----------------------------------2 表1-2改善半導體光放大器方式之比較----------------------------------------------6 表3-1磊晶結構表------------------------------------------------------------------------28 表3-2模擬條件表------------------------------------------------------------------------29 表3-3材料增益模擬條件表一---------------------------------------------------------32 表3-4材料增益模擬條件表二---------------------------------------------------------33 表3-5 DBR模擬條件表-----------------------------------------------------------------35 表3-6 不同長度DBR載子分佈模擬條件表----------------------------------------37 表3-7 彎曲波導模擬條件表-----------------------------------------------------------38 表3-8 半導體光放大器模擬條件表--------------------------------------------------40

    參考文獻
    [1] M. H. Jaafar, “All-optical wavelength conversion: technologies and applications in DWDM network,” IEEE Communications Magazine, pp.86-92, March 2000.
    [2] J. P. R. Lacey, S. J. Madden, M.A. Summerfield , R. S. Tucker and L. Paris, “Four-channel WDM optical phase conjugator using four-wave mixing in a single semiconductor optical amplifier,” IEEE Electronics Letter, vol. 31, pp.743-744, Apr. 1995.
    [3] E. Desurvire, Erbium-Doped Fiber Amplifiers. Principles and Applications, New York: Wiley, 1994, Ch4.
    [4] S. Shimada, and H. Ishio, Optical Amplifiers and their Applications, New York: Wiley, 1994. Ch2.
    [5] Keigo and Lizuka, Elements of Photonics Vol II, New York Wiley, 2002, Ch13.
    [6] M. Yoshino and K. Inoue, “Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection,” IEEE Photonics Technology Letters, Vol 8, pp.58-59, Jan. 1996.M.A. Dupertuis, J.L. Pleumeekers, T.P. Hessler, P.E. Selbmann, B. Deveaud, B. Dagens and J.Y. Emery, “Extremely fast high-gain and low-current SOA by optical speed-up at transparency,” IEEE Photonics Technology Letters, Vol 12, pp.1453-1455, Nov. 2000.
    [8] D. Wolfson, “Detailed theoretical investigation and comparison of the cascadability of conventional and gain-clamped SOA gates in multi-wavelength optical networks,” IEEE Photonics Technology Letters, Vol 11, pp.1494-1496, Nov. 1999.
    [9] W. Thulke and A. Zach, “Low-threshold GaInAsP bridge-contacted planar buried-ridge structure lasers”, IEEE Photonics Technology Letters Vol 252, pp.366-367, Mar. 1989.
    [10] J.R.Kim, “Spot-size converter integrated polarization insensitive semiconductor optical amplifiers”, IEEE Photonics Technology Letters, Vol 11, pp.967-969, Aug. 1999.
    [11] G. Eisenstein and L.W. Stulz, “Antireflection coatings on semiconductor laser facets using sputtered lead silicate glass,” IEEE Journal of Lightwave Technology, vol. 4, pp. 1373-1375, Dec. 1986.

    [12] Y. Yamamoto, Coherence Amplification and Quantum Effects in Semiconductor Lasers, 1991, New York Wiley, Ch7.
    [13] T. Saitoh, T. Mukai and O. Mikami, “Theoretical analysis and fabrication of antireflection coatings on: laser-diode facets,” IEEE Journal of Lightwave Technology, vol. 2, Ap. 1985.
    [14] 洪志遠, 半導體雷射放大器之製作與量測, 碩士論文, 台灣科技大學, 民國八十七年
    [15] 楊金添, 使用輔助光之半導體光放大與波長轉換, 碩士論文, 台灣科技大學, 民國九十年
    [16] L.F. Tiemeijer and P.J.A. Thijs, “Polarization resolved, complete characterization of 1310 nm fiber pigtailed multiple-quantum-well optical amplifiers”, IEEE Electronics Letter Vol 14, pp.1524-1533, Jun. 1996.
    [17] M. Bechman, P.Doussiere and J.Y. Emery “Polariation-insensitive clamped-gain SOA with integrated spot-size convertor and DBR gratings for WDM applications at 1.55 μm wavelength,” IEEE Electronics Letter, vol.32, Oct. 1996.
    [18] B. Bauer, F. Henry and R. Schimpe, “Gain stabilization of a semiconductor optical amplifier by distributed feedback,” IEEE Photonics Technology Letters, Vol 6, pp.182- 185, Feb. 1994.
    [19] H. Kim, J. Lee, I. Yun and S. Kim, “A gain-clamped SOA with distributed Bragg reflectors fabricated under both ends of active waveguide with different lengths,” IEEE Photonics Technology Letters, Vol 16, pp.999-1001, Apr. 2004.
    [20] P. Doussiere and F. Pommereau, “1550 nm polarization independent DBR gain clamped SOA with high dynamic input power range,” IEEE Photonics Technology Letters Vol 3, pp.169-172, Sept. 1996.
    [21] Ch. Holtmann and P.-A. Besse “Polarization independent bulk active region semiconductor optical amplifiers for 1.3 μm wavelengths,” IEEE Photonics Technology Letters, Vol 16, pp.999-1001, Apr. 2004.
    [22] Jongwoon Park, Xun Li and Wei-Ping Huang, “Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors”, IEEE Journal of Quantum Electronics, Vol 39, pp.1415-1423, Nov. 2003.
    [23] I. P. Kaminow, G. Eisenstein and L. W. Stulz, “Measurement of the model reflectivity of an antireflection coating on a superluminescent diode,” IEEE Journal of Quantum electronics, vol. QE-19, Apr. 1983.
    [24] S. R. Joseph, J. Hawkins, C. E. Zah, M.Serafin and T. P. Lee, “The tilted waveguide semiconductor laser amplifier”, Journal of Applied Physics, pp. 2240-2242, 1988.
    [25] V. Subramaniam, G.N. De Brabander, ”Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides”, IEEE Journal of Lightwave Technology, Vol 15, pp.990-997, Jun. 1997.
    [26] L.A Coldren and S.W Corzine, Diode Lasers and Photonic Integrated Circuits. New York: Wiley, 1995.
    [27] Jinying Sun and Morthier G., “Numerical and theoretical study of the crosstalk in gain clamped semiconductor optical amplifiers,” IEEE Journal of Quantum Electronics, Vol 3, pp.1162-1167, Oct. 1997.
    [28] 郭盛輝, 應用於高速光開關之半導體光放大器, 碩士論文, 台灣科技大學, 民國九十三年

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2006/07/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE