簡易檢索 / 詳目顯示

研究生: 王偉鍵
Wei-Chien Wang
論文名稱: 以有限元素法探討崩積土壤邊坡之穩定問題
A Study of Colluvium Slope Stability Using Finite Element Method
指導教授: 林宏達
Horn-Da Lin
李安叡
An-Jui Li
口試委員: 歐章煜
楊國鑫
徐力平
李璟芳
李安叡
林宏達
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 250
中文關鍵詞: 有限元素法膨脹角強度折減法Newmark方法依時性動態分析擬靜態分析法鑽掘樁土拱效應
外文關鍵詞: finite element method, dilation angle, strength reduction method, Newmark method, time-dependent dynamic analysis, pseudo static method, drilled shafts, soil arching effect
相關次數: 點閱:197下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣崩積土因結構具有鬆散易透水等特性,故在颱風或地震侵襲後會造成或大或小的邊坡災害。有限元素法一直是工程或學術界用來探討邊坡行為的有力工具,而分析參數的決定,往往決定分析成果的好壞。其中,參數-膨脹角(ψ')的選擇大幅影響土壤邊坡安全係數的準確性與收歛性。本研究採用FEM-PLAXIS程式分別建立3D及2D邊坡數值分析模型,藉以探討膨脹角在3D及2D邊坡數值模型中對FoS收斂性的影響。結果顯示,膨脹角在2D及3D邊坡數值模型中對FoS收斂性的影響明顯不同。當分析模型為3D且採用諧和流法則(ϕ'=ψ')時,FoS的收斂性相對不穩定且其破壞面不具唯一性或完整性。反觀,在2D分析模型中,惟採用非諧和流法則(ϕ'≠ψ')時,才會出現此種情況。此外,在3D模型中,當ϕ'=ψ'時,在相對較高的土壤強度參數條件下,ψ'對FoS收斂性的影響相對較大。此結果提供了崩積土壤邊坡在進行依時性動態分析,或鑽掘樁穩定工法等分析模型參數之設定參考。
    邊坡穩定致災因素主要包括地震和降雨,而地震引致之邊坡破壞問題也吸引許多學者投入研究。然而,對於『邊坡初始破壞時間』的研判,目前尚有需要釐清的問題。初始破壞時間的研判,除了可以對邊坡的破壞機理及漸進式行為有更深一層的瞭解外,也可作為後續邊坡整治的參考。本研究蒐集三個實際破壞案例並以四種分析方法(FEM依時性動態分析、傳統Newmark法、強化Newmark法及水平變位趨勢圖法)進行探究與釐清。結果顯示,Newmark分析法之變位量遠小於FEM,以臨界位移量(5~10cm)作為初始破壞判斷準則,則出現不符合實際邊坡破壞的情況。另外,四種方法沒有明確的一致性結果,並無法藉由其中的一種方式決定邊坡發生破壞的初始時間點。
    降雨是引致邊坡穩定問題的另一個主要因素。而鑽掘樁工法是一個可行且適應地形能力強的邊坡穩定方法,但深入的相關研究較少。因此,本研究同樣以數值分析的方式觀察鑽掘樁工法中,土拱效應與破壞面發展關係,並以穩定圖表方式建立土拱效應貢獻。研究結果顯示,邊坡破壞面發展及深度均與樁徑比(S/D)息息相關,充分反應出鑽掘樁間之土拱效應貢獻。整體而言,當地層傾斜角度(α)為0°且S/D由2增加到4時,破壞面受兩側樁體影響已大幅下降,顯示土拱效應貢獻已大幅降低。另外,在不考慮岩層影響下(α=0°),土拱效應影響較為顯著且隨著坡角增加其影響性更大。基於數個文獻案例的應用與結果比較,本研究所建立之穩定圖表具備可靠性與合理性,且可達到快速量化鑽掘樁在邊坡FoS上的貢獻,實可滿足工程實務上的應用。


    Because colluvium is loose and highly permeable, incidences of colluvium slope failure occur when typhoons or earthquakes hit Taiwan. The finite element method has been a powerful tool in engineering or academics to investigate slope behavior and failure mechanism. The adoption of correct parameters is the only way to obtain reliable analysis results. The dilation angle (ψ’), one of the critical soil parameters, significantly affects the accuracy and convergence of the slope safety factor (FoS). In this study, the FEM-PLAXIS program was applied to build 3D and 2D slope numerical models to investigate and compare the effect of dilation angle on the convergence of 3D and 2D slope models. The results showed that the effects of the dilatancy angle on the convergence of 3D and 2D slope models are different. In 3D slope models, the failure mechanisms were unclear when ϕ’ = ψ’ (associated flow rule). In addition, when the slope had higher soil strength parameters (c’ or ϕ’), the dilatancy angle can affect the result and convergence. Overall, the dilation angles have a considerable effect on the slope stability and are nonnegligible. Therefore, engineers should consider the effect of dilation angles on stability. The obtained results also reference setting parameters for follow-up analysis models such as time-dependent dynamic analysis or slope with drilled shafts.
    The main hazards of slope stability include earthquakes and rainfall. Among them, the problem of slope failure caused by earthquakes has been attracting many scholars to study. However, there are still problems that need to be clarified, such as evaluating the initial slope failure time. The study of initial slope failure time could provide a deeper understanding of the slope failure mechanism and progressive behavior and serve as a reference for slope remediation. The four analysis methods (FEM, traditional Newmark method, enhanced Newmark method, and horizontal displacement trajectory method) were adopted to investigate and compare the initial time of slope failure for three real failure cases. The result shows that the displacement by the Newmark method is much smaller than that of the FEM. If the critical displacement (5-10cm) is used as the judgment criterion, the result will not conform to the situation of actual slope failure. In addition, the results are not consistently based on the four methods, and the adoption of one hardly determines the initial time of slope failure.
    Rainfall is another major factor in the slope stability problem. The drilled shafts method is an efficient and highly adaptable approach for enhancing the stability of colluvium slopes in Taiwan, but there are few in-depth studies. The 3D numerical analysis is used in this study to investigate the failure mechanism and evaluate soil arching effect on slope stability. In addition, the contribution of the soil arching effect on FoSs is built with stability charts. It is a valuable way for preliminary design in practice. The result indicates that the depth of the failure surface is influenced by the S/D ratio (the distance to the diameter of piles), reflecting the soil arching effect on soil stability. When α (rock inclination angles) = 0˚ is considered and the S/D ratio = 4, the failure surface of the slope is not significantly influenced by the piles. Overall, the soil arching effect is more significant on α=0˚, especially for the steep slopes.
    Additionally, the soil arching effect has been included in the proposed stability charts. The proposed charts were validated through four case studies, including the well-known Woo-Wan-Chai field in southern Taiwan. The differences in FoS values between the referenced literature and this study was approximately 0.7~4.9%.

    論文摘要………………………...……………………………………………I Abstract…………………….………………………………………………III 致謝………………………….……………………………………….……VI 目錄………………………….………………………………………………X 圖目錄………………………….……………………………………….…XIII 表目錄………………………….…………………………………………XIX 符號表………………………….…………………………………………XX 第一章 緒 論 1 1.1 研究動機與目的 1 1.2 研究內容與方法 5 第二章 文獻回顧 8 2.1 邊坡破壞類型 8 2.2 地震引致邊坡破壞的機制 11 2.3 台灣崩積層分類與崩積土特性 13 2.4 數值分析方法 16 2.4.1 FEM-PLAXIS程式 17 2.4.2 Newmark位移分析法 26 2.5 強度折減法(Strength Reduction Method) 31 2.6 邊坡破壞面的發展與決定方式 34 2.7 膨脹角與流動法則(Dilation Angle and Flow Rule) 35 2.8 土拱效應及荷重傳遞因子(η值) 41 2.9 穩定數及穩定圖表 47 第三章 膨脹角對3D邊坡安全係數收斂性影響 50 3.1 前言 50 3.2 研究方法 51 3.3 基準數值分析模型與參數建立 52 3.4 2D基準模型分析結果驗證 53 3.4.1 不同膨脹角下安全係數收斂性 54 3.4.2 不同網格密度下安全係數收斂性 57 3.5 3D分析模型建立與驗證 59 3.6 結果與討論 64 3.6.1 膨脹角影響 64 3.6.2 網格密度影響 66 3.6.3 坡角影響 70 3.6.4 土壤強度參數影響 71 3.7 小結 74 第四章 以四種分析法比較地震引致之邊坡初始破壞時間點 76 4.1 前言 76 4.2 四種分析方法說明 78 4.2.1 FEM動態分析法 78 4.2.2 傳統Newmark分析法(traditional Newmark method) 79 4.2.3 強化Newmark分析法(enhanced Newmark method) 81 4.2.4 水平變位趨勢圖法(horizontal displacement trajectory method) 82 4.2.5 臨界位移量 83 4.3 三個破壞案例介紹與分析結果討論 84 4.3.1 薩爾瓦多Las Colinas崩塌案 84 4.3.2 台灣九份二山崩塌案 101 4.3.3 台灣紅菜坪崩塌案 115 4.4 小結 128 第五章 以鑽掘樁工法穩定邊坡之土拱效應觀察與穩定圖表建立 130 5.1 前言 130 5.2 研究方法與數值分析模型 131 5.3 分析結果與討論 139 5.3.1 穩定圖表 139 5.3.2 破壞面發展 150 5.4 應用案例與穩定圖表驗證 157 5.4.1 Ashour and Ardalan案例 157 5.4.2 Li and Liang案例 161 5.4.3 Huang and Yamasaki案例 162 5.4.4 五彎仔案例 166 5.5 單排樁非位於坡面中央或多排樁設置之延伸應用方式 178 5.6 小結 184 第六章 結論與建議 186 6.1 結論 186 6.2 建議 188 參 考 文 獻 189 附錄A 不同元素型式下網格細化對安全係數影響 211 附錄B 不同3D縱向邊界條件在動態分析下對變位發展影響 215 附錄C LEM及PLAXIS3D分析鑽掘樁邊坡之FoS及破壞面結果比較 224 作 者 簡 歷 248 著 作 目 錄 249  

    1. 中華民國交通部部頒設計規範(2005),『公路邊坡工程設計規範』。
    2. 中華民國內政部營建署(2019),『混凝土結構設計規範』。
    3. 王鑫,許玲玉,楊建夫(1984),『中橫公路道路邊坡的地貌分析』,行政院國家科學委員會防災科技研究報告,第74-88號。
    4. 石明隴,洪政義,黃振全(2016),『排樁擋土牆作為滑動邊坡補強工程之探討-以尖山紅山巷崩塌處理為例』,行政院農業委員會出版品,第290期。
    5. 洪如江(1984),『工程地質在自然邊坡穩定之應用(力學因素除外)』,地工技術,第7期,pp35-42。
    6. 洪景宗(2019),『三維數值模擬於邊坡受地震力作用引致位移分析之研究』,國立台灣海洋大學河海工程學系,碩士論文。
    7. 林德貴,王勝賢,張國欽,陳威翔(2016),『山區林道挖方邊坡背拉式擋土排樁穩定工法力學參數研究』,中華水土保持學報,第47卷,第3期,pp135-146。
    8. 林德貴,張國欽,蘇苗彬(2008),『颱風降雨期間梨山地滑區邊坡穩定性之數值評估』,中華水土保持學報,第39卷,第1期,pp57-81。
    9. 林德貴,黃伯舜,蘇苗彬(2005),『以數值分析方法再論林肯大郡坡地破壞』,中華水土保持學報,第36卷,第3期,pp215-232。
    10. 林彥志(2010),『利用數值模式模擬地震引致的邊坡滑動行為』,國立台灣大學土木工程學系,碩士論文。
    11. 林耕白(2016),『大規模崩塌地形衍育之數值模擬-甲仙案例』,國立交通大學土木工程學系,碩士論文。
    12. 青山工程顧問有限公司(2006),『台18線28.9K~31.5K(五彎仔)地滑區調查、整治規劃及安全評估』,交通部公路總局第五區養護工程處委託辦理之第三次總結報告。
    13. 張光宗,賴承昶,林德貴(2008),『集集地震誘發紅菜坪地滑分析』,中華水土保持學報,第39卷,第3期,pp329-344。
    14. 陳宏宇(1989),『中橫公路崩積層敏感度之研究』,行政院國家科學委員會防災科技研究報告,第78-33號。
    15. 陳爾義(2002),『地下水浸潤及滲流對崩積土邊坡穩定影響之探討』,國立海洋大學河海工程學系,碩士論文。
    16. 陳意璇(2002),『溪頭地區山崩潛感圖製作研究』,國立臺灣大學土木工程學系,碩士論文。
    17. 許煜煌(2002),『以不安定指數法進行地震引致坡地破壞模式分析』,國立台灣大學土木工程學系,碩士論文。
    18. 許暢軒(2016),『地震誘發遽變式山崩之臨界位移』,國立中央大學應用地質學系,碩士論文。
    19. 徐慧嫺(2016),『地震引發山崩:初始時間及破壞面之分析』,國立成功大學土木工程學系,碩士論文。
    20. 楊凌翔(2005),『地震引致之山崩條件式機率預測模式-以集集地震為例』,國立臺灣大學土木工程學系,碩士論文。
    21. 鄭清江(2005),『山坡地校園生態防災系統建立之研究子計畫四:崩積土層滑動機制與坡地校園安全防災對策之研究』,國科會補助專題研究計畫,計畫號碼:NSC93-2745-E-211-002-URD。
    22. 董家鈞,楊賢德(2001),『崩積層之分類與工程特性研究』,中華水土保持學報,第8卷,第1期,pp37-41。
    23. 萬獻銘(1987),『中橫公路邊坡崩塌地粘土礦物與坡面破壞之關係研究』,行政院國家科學委員會防災科技研究報告,第72-52號。
    24. 蕭新財(2011),『不飽和崩積土壤淺層水文特性對邊坡穩定影響之研究』,國立台灣科技大學營建工程學系,碩士論文。
    25. Allen, C.R., Brune, J.N., Cluff, L.S., Barrows, A.G.J., (1998). ”Evidence for unusually strong near-field ground motion on the hanging wall of the San Fernando fault during the 1971 earthquake.”, Seismological Research Letters, 69, 6, 524-531.
    26. Ashour, M., Ardalan, H., (2012). “Analysis of pile stabilized slopes based on soil-pile interaction.” Computers and Geotechnics, 39, 85-97.
    27. Baker, R., Shukha, R., Operstein, V., Frydman, S., (2006). “Stability charts for pseudo-static slope stability analysis.” Soil Dynamics and Earthquake Engineering, 26(9), 813-823.
    28. Bell, J.M., (1966). “Dimensionless parameters for homogeneous earth slopes.” Journal of the Soil Mechanics and Foundations Division, ASCE, 92(5), 51-65.
    29. Blake, T.F., Hollingsworth, R.A., Stewart, J.P., (2002). “Recommended procedures for implementation of DMG Special Publication 117-Guidelines for analyzing and mitigating landslide hazards in California.” Southern California Earthquake Center.
    30. Bray, J.D., Travasarou, T., (2007). “Simplified procedure for estimating earthquake-induced deviatoric slope displacements.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 133(4), 381-392.
    31. Brinkgreve, R.B.J., Swolfs, W.M., Engin, E., (2016). PLAXIS 3D 2016-User Manual, Delft, The Netherlands: Plaxis bv; 2016.
    32. Brinkgreve, R.B.J., Kumarswamy, S., Swolfs, W.M., (2019). PLAXIS 2019 manual, Delft, The Netherlands: Plaxis bv; 2016.
    33. Bryan, A.M., Brian, B.S., (2014). “Pile group settlement estimation: suitability of nonlinear interaction factors.” International Journal of Geomechanics, 04014056(11).
    34. Bolton M.D., (1986). “The strength and dilatancy of sands.” Géotechnique, 36(1), 65-78.
    35. Bouckovalas, G.D., (2005). ”Numerical evaluation of slope topography effects on seismic ground motion.”, Soil Dynamics and Earthquake Engineering, 25, 547-558
    36. Cai, F., Ugai, K., (2000). “Numerical analysis of the stability of a slope reinforced with piles.” Soils and Foundations, 40(1), 73-84.
    37. Cai, F., Ugai, K., Hagiwara, T., (2002). “Base stability of circular excavation in soft clay.” Journal of Geotechnical and Geoenvironmental Engineering, 128(8), 702-706.
    38. California Geological Survey (CGS), (2008). “Guidelines for Evaluating and Mitigating Seismic Hazards in California.” Special Publication 117A. CGS, Sacramento.
    39. Candia, G., Montgomery, J., Lemnitzer, A., Martínez, A., (2020). “The September 19, 2017 Mw 7.1 Puebla-Mexico City earthquake: Observed rockfall and landslide activity.” Soil Dynamics and Earthquake Engineering, 130, 105972.
    40. Chang, K.J., Taboada, A., Lin, M.L., Chen, R.F., (2005). “Analysis of landsliding by earthquake shaking using a block on slope thermo-mechanical model: Example of Jiufengershan landslide, central Taiwan.” Engineering Geology, 80, 151-163.
    41. Chang, K.J., Taboada, A., (2009). “Discrete element simulation of the Jiufengershan rock-and-soil avalanche triggered by the 1999 Chi-Chi earthquake, Taiwan.” Journal of Geophysical Research, 114, F03003.
    42. Chang, K.J., Wei, S.K., Chen, R.F., Chan, Y.C., Tsai, P.W., Kuo, C.Y., (2013). “Empirical Modal Decomposition of Near Field Seismic Signals of Tsaoling Landslide.” Earthquake-Induced Landslides, Springer Berlin Heidelberg, 421-430.
    43. Chang, K.T., Lin, M.L., Dong, J.J., Chien, C.H., (2012). “The Hungtsaiping landslides: from ancient to recent.” Landslides, 9, 205-214.
    44. Chang, M., Chiu, Y.F., Lin, S.Y., Ke, T.H., (2005). “Preliminary study on the 2003 slope failure in Woo-wan-chai Area, Mt. Ali Road, Taiwan.” Engineering Geology, 80, 93-114.
    45. Chang, M., Chen, S.D., Li, P.R., Liu, H.C., Wu, C.F., (2007). “Investigation of the geometry and distribution of sliding masses of slopes at the Woo-Wan-Chai Landslide Area, Taiwan.” Proceedings of First North American Landslide Conference, Vail, Colorado, 759-768.
    46. Chang, M., Huang, R.C., (2013). “The Challenge of the Slope Failure Problem and Its Remedial Considerations at Mileage 39Km, Mt. Ali Road, Taiwan.” 18th International Conference on Soil Mechanics and Geotechnical Engineering, ISSMGE, Paris, 2161-2164.
    47. Chatterjee, D., Murali Krishna, A., (2018). “Stability analysis of non-homogeneous soil slopes using numerical techniques.” Geotechnical Applications, Lecture Notes in Civil Engineering, 219-227.
    48. Chen, C.Y., Martin, G.R., (2002). “Soil-structure interaction for landslide stabilizing piles.” Computers and Geotechnics, 29, 363-386.
    49. Cheng, Y.M., Lansivaara, T., Wei, W.B., (2007). “Two-dimension slope stability analysis by limit equilibrium and strength reduction methods.” Computers and Geotechnics, 34, 137-150.
    50. Cho, G.C., (2016), “Geotechnical engineering for sustainable development”, Proceedings of the 2016 World Congress on Advances in Civil, Environmental and Materials Research (ACEM16), Jeju, Korea, August.
    51. Chow, Y.K., (1996). “Analysis of piles used for slope stabilization.” International Journal for Numerical & Analytical Methods in Geomechanics, 20(9), 635-646.
    52. Chugh, A.K., (2003). “On the boundary conditions in slope stability analysis.” International Journal for Numerical and Analytical Methods in Geomechanics, 27(11), 905-926.
    53. Courant, R.L., (1943). “Variational Methods for the Solution of Problems of Equilibrium and Vibration”, Bulletin of the American Mathematical Society, 49, 1-23.
    54. Crosta, G., Imposimato, S., Roddeman, D., Chiesa, S., Moia, F., (2005). ”Small fast-moving flow-like landslides in volcanic deposits: The 2001 Las Colinas Landslide (El Salvador).” Engineering Geology, 79, 185-214.
    55. Crosta, G., Imposimato, S., Roddeman, D., (2003). “Numerical modeling of large landslide stability and runout.” Natural Hazard and Earth System Sciences, 3(6), 523-538.
    56. Dao, T.P.T., (2011). “Validation of PLAXIS embedded piles for lateral loading.” Master thesis, Delft University of Technology.
    57. Davis, E.H., (1968) “Theories of plasticity and failure of soil masses.” In: Lee IK, editor. Soil mechanics: selected topics. New York, NY, USA: Elsevier, 341-54.
    58. Dawson, E.M., Roth, W.H., Drescher, A., (1999). “Slope stability analysis by strength reduction.” Géotechnique, 49(6), 835-840.
    59. De Beer, E.E., Wallays, M., (1972). “Forces induced in piles by unsymmetrical surcharges on the soil round the piles.” Conference on Soil Mechanics and Foundation Engineering, 1, 325–332.
    60. Donald, I.B., Giam, S.K., (1988). “Application of the nodal displacement method to slope stability analysis.” In: Proceedings of the 5th Australia-New Zealand Conference on Geomechanics, Sydney, Australia., 456-460.
    61. Dong, J.J., Lee, W.R., Lin, M.L., Huang, A.B., Lee, Y.L., (2009). “Effects of seismic anisotropy and geological characteristics on the kinematics of the neighboring Jiufengershan and Hungtsaiping landslides during Chi-Chi earthquake.” Tectonophysics, 466, 438-457.
    62. European Committee for Standardisation (ECS), 2004, Eurocode 8: Design of Structures for Earthquake Resistance, Part 5: Foundations, Re-taining Structures and Geotechnical Aspects. European Standard EN 1998-5.
    63. Fukumoto, Y., (1972). “Study on the behaviour of stabilization piles for landslides.” Journal of JSSMFE, 12(2), 61-73.
    64. Griffiths, D.V., Lane, P.A., (1999). “Slope stability by finite elements.” Géotechnique, 49(3), 387-403.
    65. Griffiths, D.V., Marquez, R.M., (2007) “Three-dimensional slope stability analysis by elasto-plastic finite elements.” Géotechnique, 57(6), 537-546.
    66. Hang, L., Ping, C., (2012). “Influence of material dilation angle on stability of homogeneous with surcharge load.” International Journal of Geotechnical Engineering, 17C, 329-340.
    67. Hassiotis, S., Chameau, J.L., Gunaratne, M., (1997). “Design method for stabilization of slopes with piles.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 123 (4), 314-323.
    68. Hsieh, S.Y., Lee, C.T., (2011). “Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration.” Engineering Geology, 122(1-2), 34-42.
    69. Ho, I.H., (2014). “Parametric studies of slope stability analyses using three-dimensional finite element technique: geometric effects.” Journal of GeoEngineering, 9(1):33-43.
    70. Huang, S.L., Yamasaki, K., (1993). “Slope failure analysis using local minimum factor-of-safety approach.” Journal of Geotechnical Engineering, ASCE, 119 (12), 1974-1989.
    71. Huang, W.K., Lo, C.M., Lin, M.L., Dong, J.J., Chang, K.T., Chang, Y.L., (2012). “Effects of geological characteristics on the kinematics of historical Hungtsaiping landslide.” Taiwan Rock Engineering Symposium (TRES), Miaoli, Taiwan, 679-687.
    72. Huang, C.C., Lee, Y.H., Liu, H.P., Keefer, D.K., Jibson, R.W., (2001). “Influence of surface-normal ground acceleration on the initiation of the Jih-Feng-Erh-Shan landslide during the 1999 Chi-Chi, Taiwan, earthquake.” Bulletin of Seismological Society of America, 91(5), 953-958.
    73. Huang, P., Li, S.L., Guo, H., Hao, Z.M., (2015). “Large deformation failure analysis of the soil slope based on the material point method.” Computational Geosciences, 19, 951-963.
    74. Hung, C., Lin, G.W., Syu, H.S., Chen, C.W., Yen, H.Y., (2016) “Analysis of the Aso-bridge landslide during the 2016 Kumamoto earthquakes in Japan.” Bulletin of Engineering Geology and the Environment, 77(4), 1439-1449.
    75. Hwang, J., Dewoolkar, M., Ko, H.Y., (2002). “Stability analysis of two-dimensional excavated slopes considering strength anisotropy.” Canadian Geotechnical Journal, 39(5), 1026-1038.
    76. Hynes-Griffin, M.E., Franklin, A.G., (1984). “Rationalizing the seismic coefficient method.” In Technical Information Center US Army Corps of Engineers, 1-40.
    77. Indian Institute of Technology Kanpur and Gujarat State Disaster Mitigation Authority (IITK-GSDMA), 2005. Guidelines for Seismic Design of Earth Dams and Embankments. IITK-GSDMA, Kanpur.
    78. Ito, T., Matsui, T., (1975). “Methods to estimate lateral force acting on stabilizing piles.” Soils and Foundations, 15(4), 43-59.
    79. Jeng, C.J., Su, D.Z., (2016). “Characteristics of ground motion and threshold values for colluvium slope displacement induced by heavy rainfall: a case study in northern Taiwan.” National Hazards Earth System Sciences, 16, 1309-1321.
    80. Jiang, J.C., and Yamagami, T., (2006). “Charts for estimating strength parameters from slips in homogeneous slopes.” Computers and Geotechnics, 33(6-7), 294-304.
    81. Jibson, R.W., (2009). “Regression models for estimating coseismic landslide displacement.” Engineering Geology, 91(2-4), 209-218.
    82. Jibson, R.W., (2011). “Methods for assessing the stability of slopes during earthquakes-A retrospective.” Engineering Geology, 122(1-2), 43-50.
    83. Jibson, R.W., Crone, A.J., (2001). “Observations and recommendations regarding landslide hazards related to the January 13, 2001 M-7.6 El Salvador earthquake.” US Department of the Interior, US Geological Survey, Virginia.
    84. Jibson, R.W., Keefer, D.K., (1988). “Landslides triggered by earthquakes in the central Mississippi Valley Tennessee and Kentucky.” U.S. Geological Survey Professional Paper, 1336-C.
    85. Jibson, R.W., Keefer, D.L., (1989). “Statistical analysis of factors affecting landslide distribution in the New Madrid seismic zone. Tennessee and Kentucky.” Engineering Geology, 27, 509-542.
    86. Jibson, R.W., Harp, E.L., Michael, J.A., (2000). “Method for producing digital probabilistic seismic Landslide hazard maps.” Engineering Geology, 58, 271-289
    87. Keefer, D.K., (1984). “Landslides caused by earthquakes.” Geological Society of America Bulletin, 95, 406-421.
    88. Keefer, D.K., Wilson, R.C., (1989). “Predicting earthquake-induced landslides with emphasis on arid and semi-arid environment.” In Landslides in a Semi-Arid Environment, Inland Geological Survey Society, Riverside, California, 2, 118-149.
    89. Kelesoglu, M.K., (2016). “The evaluation of three-dimensional effects on slope stability by the strength reduction method.” KSCE Journal of Civil Engineering, 20(1), 229-242.
    90. Kim, Y.H., Jeong, S.S., (2011). “Analysis of soil resistance on laterally loaded piles based on 3D soil–pile interaction.” Computers and Geotechnics, 38, 248-257.
    91. Khoa, H.D.V., Jostad, H.P., (2010). “Finite element modeling of the Las Colinas landslide under earthquake shaking.” 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Deigo, California, U.S.A., Paper No. 4.61b.
    92. Koltuk, S., Fernandez-Steeger, T.M., (2014). “Evaluation of seismic stability of coherent landslides: Analytical approach versus FEM.” 5th International INQUA Meeting Conference on Paleoseismology, Active Tectonics and Archeoseismology, Busan, Korea, 5, 21-27.
    93. Konagai, K., Johansson, J., Mayorca, P., Yamamoto, T., Miyajima, M., Uzuoka, R., Pilido, N.E., Duran, F.C., Sassa, K., Fukuoka, H., (2002). “Las Colinas landslide caused by the Janurary 13, 2001 off the coast of El Salvador earthquake.” Journal of Japan Association for Earthquake Engineering, 2(1).
    94. Krabbenhoft, K., Karim, M.R., Lyamin, A.V., Sloan, S.W., (2012) “Associated computational plasticity schemes for nonassociated frictional material.” Internal Journal for Numerical Methods in Engineering, 90, 1089-1117.
    95. Kumar, J., (2000). "Slope stability calculations using limit analysis. In Proc. Slope Stability 2000, ASCE Special Publication 101, 239-249.
    96. Kumar J., (2004). “Stability factors for slopes with nonassociated flow rule using energy consideration.” International Journal of Geomechanics, 264(4), 264-272.
    97. Lambe, T.W., Whitman, R.V., (1979). “Soil Mechanics”, Wiley, New York.
    98. Lee, C.Y., Hull, T.S., Poulos, H.G., (1995). “Simplified pile-slope stability analysis.” Computers and Geotechnics, 17, 1-16.
    99. Lee, D.H, Lai, M.H., Wu, J.H., Chi, Y.Y., Ko, W.T., Lee, B.L., (2013). “Slope management criteria for Alishan Highway based on database of heavy rainfall-induced slope failures.” Engineering Geology, 162, 97-107.
    100. Li, A.J, Merifield, R.S., Lyamin, A.V., (2009). “Limit analysis solution for three dimensional undrained slopes.” Computers and Geotechnics, 36, 1330-1351
    101. Li, A.J., Merifield, R.S., Lyamin, A.V., (2010). “Three-dimensional stability charts for slopes based on limit analysis methods.” Canadian Geotechnical Journal, 47(12), 1316-1334.
    102. Li, L., Liang, R.Y., (2014). “Reliability-based design for slopes reinforced with a row of drilled shafts.” International Journal for Numerical and Analytical Methods in Geomechanics, 38, 202-220.
    103. Li, X.P., He, S.M., Wang, C.H., (2006) “Stability analysis of slopes reinforced with piles using limit analysis method.” GeoShanghai International Conference, paper no. GPS 151.
    104. Liang, R.Y., Zeng, S., (2002). “Numerical study of soil arching mechanism in drilled shafts for slope stabilization.” Soils and Foundations, 42(2), 83-92.
    105. Liang, R.Y., Yamin, M., (2010). “Three-dimensional finite element study of arching behavior in slope/drilled shafts system.” International Journal of Numerical and Analytical Methods in Geomechanics, 1157-1168.
    106. Liao, H.W., Lee, C.T., (2000). “Landslides triggered by the Chi-Chi earthquake.” Proceedings of the 21st Asian conference on remote sensing, Taipei, 1-2, 383-388
    107. Lim, K., Lyamin, A.V., Cassidy, M.J., Li, A.J., (2015). “Three-dimensional slope stability charts for frictional fill materials placed on purely cohesive clay.” International Journal of Geomechanics, 16(2), 04015042.
    108. Lim, K., Li, A.J., Lyamin, A.V., (2015) “Three-dimensional slope stability assessment of two-layered undrained clay.” Computers and Geotechnics, 70, 78-89.
    109. Lim, K., Li, A.J., Schmid, A., Lyamin, A.V., (2017). “Slope stability assessments using finite element limit analysis methods.” International Journal of Geomechanics, 17(2), 06016017.
    110. Likitlersuang, S., Pholkainuwatra, P., Chompoorat, T., Keawsawasvong, S., (2018) “Numerical modelling of rail way embankment for high-speed train constructed on soft soil.” Journal of GeoEngineering, 13(3), 149-159.
    111. Lin, G.W., Hung, C., Syu, H.S., (2017). “Evaluation of an enhanced FS method for finding the initiation time of earthquake-induced landslides.” Bulletin of Engineering Geology and the Environment, 78(1), 497-506.
    112. Lin, H., Xiong, W., Cao, P., (2013). “Stability of soil nailed slope using strength reduction method.” European Journal of Environmental and Civil Engineering, 17(9).
    113. Lin, H.D., Liang, R.Y., Tsai, P.H., Dang, H.P., (2011). “Analysis of load transfer factor of soil slope stabilized by drilled shaft.” Proceedings, 3rd International Conference on Computational Mechanics (ISCM III), paper no. MS08-02, 222-223, Taipei.
    114. Lin, H.D., Tjuar, R., Dang, H.P., (2013). “Analyses of drilled shaft effects on stabilizing the soil slope.” Invited Paper, 1st Taiwan-Kazakhstan Joint Workshop in Geotechnical Engineering, Taipei, Taiwan.
    115. Lin, H.D., Li, A.J., Wang, W.C., (2019). “Investigation of load transfer factor of slope with drilled shaft.” Proceeding 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, paper no. CTGS-023, Taipei.
    116. Lin, H.D., Huang, J.R., Wang, W.C., Chen, C.W., (2019). “Study of an unsaturated slope failure due to rainfall infiltration in Wenshan district of Taipei city.” Journal of GeoEngineering, 14(4), 277-286.
    117. Lin, H.D., Wang, W.C., Li, A.J., (2020). “Investigation of dilatancy angle effects on slope stability using the 3D finite element method strength reduction technique.” Computers and Geotechnics, 118, 103295.
    118. Lin, M.L., Jeng, F.S., (2000). “Characteristics of hazards induced by extremely heavy rainfall in Central Taiwan - Typhoon Herb.” Engineering Geology, 58, 191-207.
    119. Lin, M.L. and Wang, K.L., (2006). “Seismic slope behavior in a large-scale shaking table model test.”, Engineering Geology , 86(2-3), 118-133.
    120. Liu, S.Y., Shao, L.T., Li, H.J., (2015). “Slope stability analysis using the limit equilibrium method and two finite element methods.” Computers and Geotechnics, 63, 291-298.
    121. Lotti, C. and Associati-Enel, H., (2001). “Investigacion geotecnical integral, informe final, sintesis geologica y modelos numericos, Anexo: 2.2.1. - El Salvador”, 149.
    122. Lo, C.M., Lin, M.L., Lee, W.C., Lee, K.C., Chien, S.Y., Dong, J.J., Chang, K.T., Huang, A.B., (2008). “Landslide characterization and zonation of Hungtsaiping area based on topography aerial photograph and PIV technology.” The 3rd International Conference on Site Characterization, Taipei, Taiwan, 467-471.
    123. Cheung, R.W.M. and Tang, W.H., (2005) “Realistic assessment of slope reliability for effective landslide hazard mangement.” Géotechnique, 55(1), 85-94.
    124. Luo, H.Y., Zhou, W., Huang, S.L., Chen, G., (2004). “Earthquake-induced landslide stability analysis of the Las Colinas landslide in El Salvador.” Proceedings of the ISRM SINOROCK 2004 symposium, International Journal of Rock Mechanics and Mining Sciences, 41(3), Paper 2B 26.
    125. Makdisi, F.I., Seed, H.B., (1978). “Simplified procedure for estimating dam and embankment earthquake-induced deformations.” In Journal of Geotechnical and Geoenvironmental Engineering, ASCE.
    126. Manzari, M.T., Nour, M.A., (2000). “Significance of soil dilatancy in slope stability analysis.” Journal of Geotechnical and Geoenvironmental Engineering, 126(1), 75-80.
    127. Matasovic, N., Kavazanjian, E., Yan, L., (1997). “Newmark deformation analysis with degrading yield acceleration.” Conference: Geosynthetic, Long Beach, California, 2, 989-1000.
    128. Matsui, T., San, K.C., (1992). “Finite element slope stability analysis by shear strength reduction technique.” Soils and Foundations, 32(1), 59-70.
    129. Mathews, W.H., McTaggart, K.C., (1978). ”Hope rockslides, British Columbia, Canada.”, Developments in geotechnical engineering, 14A, 259-275.
    130. Michalowski, R.L., (200). “Limit analysis and stability charts for 3D slope failures.” Journal of Geotechnical and Geoenvironmental Engineering, 136(4), 583-593.
    131. Michalowski, R.L., (2002). “Stability charts for uniform slopes.” Journal of Geotechnical and Geoenvironmental Engineering, 128(4), 351-355.
    132. Michalowski, R.L., (2010). “Limit analysis and stability charts for 3D slope failures.” Journal of Geotechnical and Geoenvironmental Engineering, 136(4), 583-593.
    133. Miles, S.B., Keefer, D.K., (2009). “Evaluation of CAMEL—comprehensive areal model of earthquake-induced landslides.” Engineering Geology, 104(1-2), 1-15.
    134. Mononobe, N. and Matsuo, H., (1929). “On the determination of earth pressure during earthquakes.” Proceedings of the World Engineering Conference, 9, 176.
    135. Nakamura, H., (1984). “Design of rigid dowel piles for landslide control.” 4th International Symposium on Landslides, 2, 149-154.
    136. Nethero, M.F. (1982), “Slide control by drilled pier walls”, In application to landslide control problems, Edited by Reeves, R. B., ASCE, 61-76.
    137. Newmark, N.M., (1965). “Effects of earthquakes on dams and embankments.” Géotechnique, 15(2), 139-160.
    138. Ng, C.W.W., Zhang, L.M., (2001) “Three-dimensional analysis of performance of laterally loaded sleeved piles in sloping ground.” Journal of Geotechnical and Geoenvironmental Engineering, 127(6), 499-509.
    139. Nguyen, T.S., (2020). “Deformation Characteristics of Unstable Shallow Slopes triggered by Rainfall Infiltration:from Pre-Failure to Post-Failure Stages.” Ph.D. Thesis, National Taiwan University of Science and Technology.
    140. Okabe, S., (1926). “General theory of earth pressure.” Journal of Japan Society of Civil Engineers, 12.
    141. Pawan, K.S., Himangshu, L., Karam, V.I., Diganta, G., (2017) “3-Dimensional Slope Stability Analysis Using PLAXIS-3D.” Indian Geotechnical Conference, IIT Guwahati, India, 1-4.
    142. Popescu, M.E., (1994). “A suggested method for reporting landslide causes.” Bulletin of the International Association of Engineering Geology, Paris, 50, 71-74
    143. Popescu, M.E., (2002). “Landslide causal factors and landslide remediatial options.” In 3rd International Conference on Landslides, Slope Stability and Safety of Infra-Structures, Singapore, 61-81.
    144. Poulos, H.G., (1995). “Design of reinforcing piles to increase slope stability.” Canadian Geotechnical Journal, 32, 808-818.
    145. Qian, Z.G., Li, A.J., Merifield, R.S., Lyamin, A.V., (2014) “Slope stability charts for two-layered purely cohesive soils based on finite-element limit analysis methods.” International Journal of Geomechanics, 15(3):06014022.
    146. Qian Z.G., Li, A.J., Chen, W.Z., Lyamin, A.V., Jiang, J.C., (2019) “An artificial neural network approach to inhomogeneous soil slope stability predictions based on limit analysis methods.” Soils and Foundations, 59, 556-569.
    147. Romeo, R., (2000). “Seismically induced landslide displacements: a predictive model.” Engineering Geology, 58(3-4), 337-351.
    148. Roscoe, K.H., (1970). “The Influence of Strains in Soil Mechanics.” Géotechnique, 20(2), 129-170.
    149. Rowe, P.A., (1962). “The Stress-Dilatancy Relation for Static Equilibrium of an Assembly of Particles in Contact.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 269(1339), 500-527.
    150. Rowe, P.W., Oates, D.B., Skermer, N.A., (1963). “The stress-dilatancy performance of two clays.” In Laboratory shear testing of soils, ASTM Spec. Tech. Publ, 361, 134-143.
    151. Scott, B.F., (1978). ”Incremental movement of a rockslide”, Developments in Geotechnical Engineering, 14A, 659-668.
    152. Shen, J., Karakus. M., (2014) “Three-dimensional numerical analysis for rock slope stability using shear strength reduction method.” Canadian Geotechnical Journal, 51, 164-172.
    153. Shou, K.J, Chen, Y.L., (2005). “Spatial risk analysis of Li-shan landslide in Taiwan.” Engineering Geology, 80, 199-213.
    154. Shou, K., Chen, Y., Liu, H., (2009). “Hazard analysis of Li-shan landslide in Taiwan.” Geomorphology, 103, 143-153.
    155. Shou, K.J, Wang, C.F., (2003). “Analysis of the Chiufengershan landslide triggered by the 1999 Chi-Chi earthquake in Taiwan.” Engineering Geology, 68, 237-250.
    156. Sloan, S.W., (2013). “Geotechnical stability analysis” Géotechnique, 63(7), 531-572.
    157. Soga, K., Alonso, E., Yerro, A., Kumar, K., and Bandara, S., (2016). “Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method.” Géotechnique, 66(3), 248-273.
    158. Stewart, D.P., (1992). “Lateral loading of piled bridge abutments due to embankment construction.” Ph.D. Thesis, University of Western Australia.
    159. Stewart, D.P., Jewell, R.J., Randolph, M.F., (1994). “Design of piled bridge abutments on soft clay for loading from lateral soil movements.” Géotechnique, 44(2), 277-296.
    160. Tang, C.L., Hu, J.C., Lin, M.L., Yuan, R.M., Cheng, C.C., (2013). “The mechanism of the 1941 Tsaoling landslide, Taiwan: insight from a 2D discrete element simulation.” Environmental Earth Sciences, 70, 1015-1019.
    161. Taylor, D.W., (1937). “Stability of earth slopes.” Journal of the Boston Society of Civil Engineers, 24(3), 197-246.
    162. Technical Code for Building Slope Engineering of China and the Guidelines for Evaluating (GB 50330-2013). China National Standards.
    163. Terzaghi, K., (1943). “Theoretical Soil Mechanics” Wiley, New York.
    164. Tschuchnigg, F., Schweiger, H.F., Sloan, S.W., Lyamin, A.V., Raissakis, I., (2015a). “Comparison of finite-element limit analysis and strength reduction techniques.” Géotechnique, 65(4), 249-257.
    165. Tschuchnigg, F., Schweiger, H.F., Sloan, S.W., (2015b). “Slope stability analysis by means of finite element limit analysis and finite element strength reduction techniques. Part I: Numerical studies considering non-associated plasticity.” Computers and Geotechnics, 70, 78-189.
    166. Tschuchnigg F., Schweiger H.F., Sloan S.W., (2015c). “Slope stability analysis by means of finite element limit analysis and finite element strength reduction techniques. Part II: Back analyses of a case history.” Computers and Geotechnics, 70:169-177.
    167. Psarropoulos, P., Papazafeiropoulos, G., Tsompanakis, Y., (2009). “Dynamic interaction of retaining walls with retained soil and structures.” ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Rhodes, Greece.
    168. USGS, (2004). “Landslide Types and Processes.”
    169. Varnes, D.J., (1978). “Slope Movement Types and Processes.” In Special Report 176: Landslides: Analysis and Control, editors R.L. Schuster and R.J. Krizek, TRB, National Research Council, Washington, D.C., 11-33.
    170. Vermeer, P.A., de Borst, R., (1984). “Non-associated plasticity for soils, concrete and rock.” Heron, 29(3), 1-64.
    171. Wang, D., Chen, X., Yu, Y., Jie, Y., Lyu, Y., (2019). “Stability and deformation analysis for geotechnical problems with nonassociated plasticity based on second-order cone programming.” International Journal of Geomechanics, 19(2), 04018190.
    172. Wang, D.L., Yen, B.C., (1974). “Soil arching in slopes.” Journal of Geotechnical Engineering, 104(4), ASCE, 493-496.
    173. Wang, Y.J., Yin, J.H., Lee, C.F. (2001). “The influence of a non‐associated flow rule on the calculation of the factor of safety of soil slopes.” International Journal for Numerical and Analytical Methods in Geomechanics, 25, 1351-1359.
    174. Wang, W.N., Chigria, M., Furuya, T., (2003). “Geological and geomorphological precursors of the Chiu-fen-erh-shan landslide triggered by the Chi-chi earthquake in central Taiwan.” Engineering Geology, 69, 1-13.
    175. Wartman, J., Bray, J. D., and Seed, R. B., (2001). “Physical model studies of seismically induced deformations in slopes”, GeoEngineering, 61(03), 1541.
    176. Wartman, J., Bray, J. D., and Seed, R. B., (2005). “Shaking table modeling of seismically induced deformation in slopes.” Journal of Geotechnical and Geoenvironmental Engineering, 131(5), 610-622.
    177. Wei, L.W., Huang, C.M., Huang, W.K., Lee, C.F., Tsao, T.C., Chi, C.C., (2016). “Susceptibility and early warning threshold for rainfall-induced shallow landslide in Taiwan.” GSDI 15 World Conference, Taipei.
    178. Wei, W.B., Cheng, Y.M., (2009). “Strength reduction analysis for slope reinforced with one row of piles.” Computers and Geotechnics, 36, 1176-1185.
    179. Wei, W.B., Cheng, Y.M., (2010). “Stability analysis of slope with water flow by strength reduction method.” Soils and Foundations, 50(1), 83-92.
    180. Wieczorek, G.F., Wilson, R.C., Harp, E.L., (1985). “Map showing slope stability during earthquakes in San Mateo County, California.” Miscellaneous Investigations Map I-1257-E., U.S. Geological Survey.
    181. Won, J., You, K., Jeong, S., Kim S., (2005). “Coupled effects in stability analysis of pile-slope systems.” Computers and Geotechnics, 32, 304-315.
    182. World Bank, (2005) “Natural disaster hotspots: A global risk analysis” Washington, D.C., World Bank Group.
    183. Wu, J.H., Lin, H.M., (2009). “Analyzing the shear strength parameters of the Chiu-fen-erh-shan landslide: integrating strong-motion and GPS data to determine the best-fit accelerogram.” GPS Solutions, 13, 153-163.
    184. Wu, J.H., Wang, W.N., Chang, C.S., Wang, C.L., (2005). “Effects of strength properties of discontinuities on the unstable lower slope in the Chiu-fen-erh-shan landslide, Taiwan.” Engineering Geology, 78, 173-186.
    185. Wu, J.H., (2007). “Applying discontinuous deformation analysis to assess the constrained area of the unstable Chiu-fen-erh-shan landslide slope.” International Journal for Numerical Analytical Methods in Geomechanics, 31(5), 649-66.
    186. Wu, J.H., (2009). “Seismic landslide simulations in discontinuous deformation analysis.” Computer and Geotechnics, 37, 594-601.
    187. Yang, K.H., Uzuoka, R., Thuo, J.N., Lin G.L., Nakia, Y.T., (2017). “Coupled hydro-mechanical analysis of two unstable unsaturated slopes subject to rainfall infiltration.” Engineering Geology, 216, 13-30.
    188. Yang, K.H., Thuo, J.N., Chen, J.W., Liu, C.N., (2019). “Failure Investigation of a Geosynthetic-Reinforced Soil Slope subject to Rainfall.” Geosynthetics International, 26(1), 42-65.
    189. Yang, X., Yang, G., Yu, T., (2012). “Comparison of strength reduction method for slope stability analysis based on ABAQUS FEM and FLAC3D FDM.” Applied Mechanics and Materials, 170-173, 918-922.
    190. Yu, Y., Xie, L., Zhang, B., (2005). “Stability of earth-rockfill dams: Influence of geometry on the three-dimensional effect.” Computers and Geotechnics, 32(5):326-339.
    191. Zeng, S., Liang, R., (2002). “Stability analysis of drilled shafts reinforced slope.” Soils and Foundations, 42(2), 93-102.
    192. Zhang, Z., Fleurisson, J.A., Pellet, F.L., (2018). “Numerical evidence of site effects contributing to triggering the Las Colinas landslide during the 2001 Mw = 7.7 El Salvador earthquake.” Landslides, 15, 2373-2384.
    193. Zhou, C., Shao, W., Van Westen, C.J., (2014). “Comparing two methods to estimate lateral force acting on stabilizing piles for a landslide in the Three Gorges Reservoir, China.” Engineering Geology, 173, 41-53.
    194. Zienkiewicz, O.C., Humpheson, C., Lewis, R.W., (1975). “Associated and non-associated visco-plasticity and plasticity in soil mechanics.” Géotechnique, 25(4), 671-689.

    QR CODE