簡易檢索 / 詳目顯示

研究生: 簡妥芸
Tuo-yun Jian
論文名稱: 後牙區人工植牙之力學驗證
Mechanical Verification of Implant Restoration in the Posterior Region
指導教授: 曾垂拱
Chwei-Goong Tseng
口試委員: 石淦生
none
李維楨
Wei-Chen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 60
中文關鍵詞: 應變規法有限元素法植牙齒槽骨
外文關鍵詞: strain gage, Finite Element Method, alveolus bone, Implant
相關次數: 點閱:221下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在製作雙骨質齒槽骨模型以模擬實際植牙狀態下皮質骨的受力情況,並量測此模型受力下之應變變化情形,以驗證有限元素法(Finite Element Method, FEM)數值分析之可靠性。
      本研究首先根據實際的雙骨質齒槽骨幾何尺寸與材料性質,製作出近似實體之齒槽骨模型。在材料選擇上,吾人曾嘗試Bis-GMA及TEGDMA樹脂混入玻璃纖維、燒結LCP之塑膠粒、環氧樹脂混入氧化鋯粉與混入氧化鋁粉等製作方式。最後依嘗試結果,採用3M Z100光固化樹脂作為製作皮質骨的材料,而鬆質骨則使用環氧樹脂混入適量石英粉製成。待模型完成後,植入人工牙根、支台及齒冠,以模擬實際人工植牙手術的狀況,續配合應變規法進行受力分析,相同模型並以FEM分析以進行比對。比對結果,檢視皮質骨上選定點的縱向應變時,兩者數值相當吻合,證實數值模擬的分析應屬可信。


    This thesis mainly fabricates an alveolus bone of two-material model to simulate the loading situation of the alveolus bone after implantation, and measures strain of the model under loading to verify the Finite Element Method analysis.
    According to the real alveolus bone which contains the cortical bone and the cancellous bone, we establish a two-material model. In the model 3M Z100 light curing was used to replace the cortical bone and quartz powder and epoxy were used to replace the cancellous bone. The material constants (Modulus of Elasticity and Poisson’s Ration) of the model were determined experimentally. An implant was installed in the model as well as an abutment and a crown to simulate a real oral implantation. The complete model under occlusion was simulated by FEM. At the surface of the real model of the selected points were bonded bi-axes strain gages. After the experiment, the measured axial strains which under occlusion were found agree well with those results from FEM.

    中文摘要I 英文摘要II 誌 謝III 目 錄IV 圖表索引VII 第一章 緒 論1 1-1 前言1 1-2 研究計畫之背景及目的2 1-3文獻回顧3 1-4 研究流程5 1-5 論文架構6 第二章 牙科植體概述7 2-1 牙科材料7 2-1-1 金屬類8 2-1-2 陶瓷類8 2-1-3 聚合物9 2-2 植體的設計考量9 2-3 植體的力學特色9 2-4 骨質的考量12 第三章 實驗模型製作過程14 3-1 光固化樹脂基本原理14 3-2 齒槽骨實體模型製作過程17 3-2-1楊氏係數的量測17 3-2-2模型製作過程27 3-3人工植牙過程30 第四章 有限元素法基本原理與軟體33 4-1 有限元素法33 4-2 MSC.PATRAN/NASTRAN有限元素軟體35 4-3 分析過程37 4-4 有限元素收斂性問題42 第五章 實驗與討論43 5-1量測系統之穩定性測試43 5-2實驗模型量測結果47 5-3數值模擬分析結果49 5-4量測與模擬結果之比對與討論50 第六章 結論與未來展望53 6-1 結論53 6-2 未來展望54 附錄A55 參考文獻57 作者簡介60

    [1]鄭仁昌,石淦生,張燕清,「下顎快速立即受力植牙之病例報告」,中華民國口腔顎面外科學會雜誌,第1期,第40-51頁,2006年。
    [2]黃威軍,「覆蓋式義齒的製作與應用」,慈濟醫學雜誌,2_S期,第39-42頁,2006年。
    [3]魏碧芬,賴俊憲,王震乾,何坤炎,「下顎齒冠外彈性附連體覆蓋式義齒之全口重建:病例報告」,臺灣口腔醫學衛生科學雜誌,2期,第87-102頁,2006年。
    [4]http://www.dentalshow.com.tw/guest/columnist/viewcolumndoc.asp? sno=161
    [5]張文輝,「美齒與科技 人工植牙」,科學發展,394期,第28-33頁,2005年。
    [6]D. Palamara, J.E.A. Palamara, M.J. Tyas, H.H. Messer,“Strain patterns in cervical enamel of teeth subjected to occlusal loading, ” Dental Materials, pp412 -419. 2000.
    [7]H.L. Huang, J.S. Huang, C.C. Ko, J.T. Hsu, C.H. Chang, Y.C. Chen,“Effects of splinted prosthesis supported a wide implant or two implants: a three-dimensional finite element analysis,’’ Clinical Oral Implants Research, pp466-472, 2005.
    [8]Cranin A.N., “Oral Implantology, ” Springfield, Ill. Thomas, 1970.
    [9]Brånemark P.I., Adell R., Breine U., Hansson B.O., Lindström J., Ohlsson A.,“Intra-osseous anchorage of dental prostheses. I. Experimental studies, ” Scand J Plast Reconstr Surg, pp81-100, 1969.
    [10]T. Carlsson, B. Rostlund, T. Albrekson, P. Albrekson, P.I.Branemark, “Osseointegration of titanium implants, ”Acta Orthopedic Scandinavian, pp 285-289, 1986.
    [11]鍾國雄,「牙科材料學」,合記書局,1993年。
    [12]Mild E.E., Bannon B.P., “Titanium alloys for biomaterial applications–An overview, ” Presented at A.S.T.M.-sponsored symposium, Phoenix, 1981.
    [13]Kay, C. Dee, David, A. Puleo, R. Bizios, “An Introduction to Tissue-Biomaterial Interactions, ” Wiley-Liss, pp1-12, 2002.
    [14]呂國富,「人工植牙臨床上生物機械學的考量」,臨床口腔植體學,日毅企業有限公司,第119頁-第125頁,1999年。
    [15]Weinberg L.A., “The biomechanics of force distribution in implant-supported prostheses, ” The International journal of oral & maxillofacial implants, pp 19-31,1993.
    [16]Rangert B., Jemt T., Jorneus L., “Force and moments on Branemark implants, ” Int J Oral Maxillofac implants, pp241-247,1989.
    [17]Kibrick M., Munir Z.A., Lash H., Fox S.S., “The development of a material system for an endosteal tooth implant.II. In vitro and in vivo evaluations of a new composite-material design, ”J Oral Implant, pp.106-123, 1977.
    [18]Weinberg L.A., Kruger B., “A comparison of implant/prosthesis loading with four clinical variables,” The International journal of prosthodontics, pp 421-433, 1995.
    [19] S.Y. Wu, Y.L. Lai, L.J. Ling, “Considerations about bone gualities of jaw bone for dental implant therapy,” Chin J Periodontology, pp 259-262. 2003.
    [20]莊精婷,「照射工作週期與強度對光固化複合樹脂之影響」,中原大學醫學工程研究所碩士論文,2006年。
    [21]K.D. Jandt, R.W. Mills, G.B. Blackwell, S.H. Ashworth, “Depth of cure and compressive strength of dental composites cured with blue light emitting diodes (LEDs), ”Dental Material, pp41-47, 2000.
    [22]Hondros G., “The Evaluation of Poisson’s Ratio and the Modulus of materials of A Low Tensile Resistance by the Brazilian (Indirect Tensile) Test with Particular Reference to Concrete, ” Australia Journal of Applied Science, pp243-268, 1959.
    [23]Stegaroiu R., Kusakari H., Nishiyama S., Miyakawa O., “Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis, ”International Journal of Oral and Maxillofacial Implants pp 781-790,1998.
    [24]賴育良、林啟豪、謝忠祐,「ANSYS 電腦輔助工程分析」,儒林圖書,第5頁~第12頁,1997年。
    [25]李沛生,「植牙應力分析之驗證」,國立台灣科技大學機械工程研究所碩士論文,2007年。

    QR CODE