簡易檢索 / 詳目顯示

研究生: 陳錦新
Yongyut - Amaritsakul
論文名稱: 不同椎弓根骨螺絲於骨咬合強度與疲勞強度之生物力學研究
Biomechanical Investigation for Pullout and Fatigue Strengths of Different Pedicle Screws
指導教授: 趙振綱
Ching-Kong Chao
林晉
Jinn Lin
口試委員: 黃榮芳
Rong-Fung Huang
王兆麟
Jaw-Lin Wang
徐慶琪
Ching-Chi Hsu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 135
中文關鍵詞: 椎弓足螺絲有限元素法田口品質工程法類神經網路法遺傳演算法生物力學測試
外文關鍵詞: Pedicle Screw, Finite Element Analysis, Taguchi method, Artificial Neural Networks, Genetic Algorithms, Biomechanical test
相關次數: 點閱:447下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來。椎弓根骨螺絲已廣泛用於治療退化性脊椎病變與創傷,目前有關於新的椎弓根骨螺絲的設計已漸漸被開發出來,但在骨螺絲完全植入與退牙植入之拉出強度特性,目前還未有完整的研究。本研究的目的是提出一種新設計的雙直徑骨螺絲,並與其它的設計作比較,包括圓柱型、圓錐型、雙內直徑和雙外直徑之設計。在椎弓根骨螺絲外徑為7mm條件下,利用有限元素法田口方法。類神經網路和遺傳演算法來尋找最佳骨螺絲之參數。分析結果顯示,在椎弓根骨螺絲外徑為7mm尺寸下,最佳尺寸分別如下:近端根部半徑為0.4mm、螺蚜傾角為5°、節距為3.3mm、螺蚜寬度為0.1mm。
    此外,進行市售椎弓根骨螺絲和雙內外直徑骨螺絲之生物力學實驗,彎曲實驗之結果顯示,在承受50-500 N循環負荷下,只有固定外徑之圓錐型骨螺絲和新型雙內外直徑骨螺絲可承受100萬次。在剛性方面,新型骨螺絲相較於錐型骨螺絲低,此可允許患者更多的活動度。另外,在穩定度方面,新型骨螺絲相似於錐型骨螺絲與其他骨螺絲有較顯著的穩定度。在拉出實驗結果,具有小內徑之第一型錐型骨螺絲,在完全植入與退牙植入之拉出強度分別為2,402 N和2,170 N,兩者相差了 9.7%。在退牙植入方面,具有小內徑之第一型錐型骨螺絲與雙內外直徑骨釘並無明顯的差異(P> 0.01),具有小內徑之錐型骨螺絲、雙內直徑和雙內外直徑。在完全植入(分別為2,115 N,2,183 N和2,227 N)與退牙植入(分別為2,066 N,2,014 N和1,941 N )均提供了良好的效果,錐型設計增加拉出強度的原因,主要是由於骨壓縮的效果。然而,錐型設計的骨螺絲於退牙植入條件時,將流失較多的拉出強度,因此,錐型設計的骨螺絲需準確的植入到所需的位置,且避免骨螺絲進行退牙植入,尤其病人具有骨質疏鬆病症。雙內直徑和雙內外直徑骨螺絲在完全植入與退牙植入物提供足夠的穩定性,具有較小螺牙深的圓柱型骨螺絲與雙外直徑骨螺絲於臨床應用時需特別注意。


    Pedicle screws have been used over the last several decades for treating degenerative spine diseases and trauma. Recently, new pedicle screw designs have been developed. However, the performances of these screws are still unclear, especially their pullout strengths when backed out after insertion. The objective of this study was to present a novel design, called double dual core screw, and compared its performances with the other designs, including cylindrical, conical, dual inner core and dual outer core designs. Taguchi’s techniques were used together with finite element analyses, artificial neural network and genetic algorithm to find the optimal screw’s parameters for pedicle screws with outer diameter of 7 mm. The optimal proximal root radius, proximal half angle, pitch and thread width of 7mm-pedicle screw were 0.4 mm, 5°, 3.3 mm, and 0.1 mm, respectively.
    The biomechanical tests of 7 available commercial pedicle screws and the double dual core screws were conducted. In bending tests, the results showed that only the conical screws with fixed outer diameter and the new double dual core screw could withstand 1,000,000 cycles of a 50–500 N cyclic load. The new screw, however, exhibited lower stiffness than the conical screw, indicating that it could afford patients more flexible movements. Moreover, the new screw produced a level of stability comparable to that of the conical screw, and it was also significantly stronger than the other screws.
    In pullout tests, the conical type 1 screw with a small inner diameter provided the highest pullout strength in both full insertion and backed-out insertion (2,402 N and 2,170 N, respectively). However, this screw’s pullout strength significantly decreased (9.7%) when backed out from full insertion. There was no significant difference between the conical type 1 screw with a small inner diameter and double dual core screw (P > 0.01) in backed-out insertion. The cylindrical screw with a small diameter, dual inner core screw and double dual core screw also provided good results in both full insertion (2,115 N, 2,183 N and 2,227 N, respectively) and backed out conditions (2,066 N, 2,014 N and 1,941 N, respectively). The increased pullout strength of the conical design could be due to the effect of bone compaction. However, the screw exhibited less consistent pullout strength when backed out when compared with the other designs. The conical screw should be inserted to the precise position without turning back, especially in osteoporosis patients. The dual inner core screw and double dual core screw could provide great stability in both conditions. Care should be taken when using both the cylindrical screw with a small thread depth and the dual outer core screw.

    中文摘要 I Abstract II Acknowledgements III List of figures VII List of tables XII List of symbols XIV Chapter 1 - Introduction 1 1.1 Basic Background 2 1.1.1 Spine Anatomy 2 1.1.2 Structures of the spine 4 1.1.3 Major parts of spinal column 13 1.1.4 The history of a pedicle screw fixation device 18 1.2 Literature reviews 22 1.2.1 Comparison of the In vitro holding strengths of conical and cylindrical screw in fully inserted setting and backed out 180° 22 1.2.2 Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out 23 1.2.3 Mechanical performance of cylindrical and dual core pedicle screws in calf and human vertebrae 24 1.2.4 A neurogenetic approach to a multiobjective design optimization of spinal pedicle screws 26 1.3 Structure of dissertation 27 Chapter 2 - Basic theories of design of experiment, Taguchi’s techniques, ANN and GA for optimization 28 2.1 Design of experiment (DOE) and Taguchi’s techniques 28 2.1.1 Taguchi techniques 30 2.1.2 12 steps for good DOE 37 2.2 Artificial Neural Network 38 2.2.1 Analogy 38 2.2.1 Feedforward ANN 40 2.2.3 Backpropagation ANN 41 2.3 Genetic Algorithm 47 2.3.1 The fundamental of coding GA 48 Chapter 3 - Multiobjective optimization design of cylindrical and conical pedicle screws using FEA, ANN and GA 54 3.1 Materials and Methods 54 3.1.1 DOE and Taguchi methods 54 3.1.2 Finite element analysis (FEA) 60 3.1.3 ANN 67 3.1.4 GA 68 3.1.5 Mechanical validation tests 70 3.2 Results 75 3.2.1 FEA results 75 3.2.2 ANOVA results 79 3.2.3 ANN 81 3.2.4 GA 86 3.2.5 Mechanical validation tests 88 Chapter 4 - Biomechanical evaluation of bending and pullout strengths of cylindrical, conical, dual inner core, dual outer core and double dual core screws (a novel design) 93 4.1 The designs of each tested screw 93 4.2 The bending tests 95 4.3 The pullout tests, including the full and backed-out insertions 96 4.4 Results 96 Chapter 5 - Discussion 112 Chapter 6 - Conclusions 120 References 122 Appendix A – ANN software 131 Appendix B – GA software 132 Author profile 133

    [1] Aebi, M., “Correction of degenerative scoliosis of the lumbar spine. A preliminary report,” Clin Orthop Relat Res, no. 232, pp. 80-6 (1988).
    [2] Azwan, M. S. a. R., I. A., “Recent studies on the pullout strength behavior of spinal fixation,” J Dev Biol Tiss Eng, vol. 3, no. 4, pp. 48-54 (2011).
    [3] Isley, M. R., Zhang, X. F., Balzer, J. R., and Leppanen, R. E., “Current trends in pedicle screw stimulation techniques: lumbosacral, thoracic, and cervical levels,” Neurodiagn J, vol. 52, no. 2, pp. 100-75 (2012).
    [4] Katonis, P. G., Kontakis, G. M., Loupasis, G. A., Aligizakis, A. C., Christoforakis, J. I., and Velivassakis, E. G., “Treatment of unstable thoracolumbar and lumbar spine injuries using Cotrel-Dubousset instrumentation,” Spine (Phila Pa 1976), vol. 24, no. 22, pp. 2352-7 (1999).
    [5] McLain, R. F., “The biomechanics of long versus short fixation for thoracolumbar spine fractures,” Spine (Phila Pa 1976), vol. 31, no. 11 Suppl, pp. S70-9; discussion S104 (2006).
    [6] Sanderson, P. L., Fraser, R. D., Hall, D. J., Cain, C. M., Osti, O. L., and Potter, G. R., “Short segment fixation of thoracolumbar burst fractures without fusion,” Eur Spine J, vol. 8, no. 6, pp. 495-500 (1999).
    [7] Vaccaro, A. R., Kim, D. H., Brodke, D. S., Harris, M., Chapman, J. R., Schildhauer, T., Routt, M. L., and Sasso, R. C., “Diagnosis and management of thoracolumbar spine fractures,” Instr Course Lect, vol. 53, pp. 359-73 (2004).
    [8] Krag, M. H., “Biomechanics of thoracolumbar spinal fixation. A review,” Spine (Phila Pa 1976), vol. 16, no. 3 Suppl, pp. S84-99 (1991).
    [9] Okuyama, K., Sato, K., Abe, E., Inaba, H., Shimada, Y., and Murai, H., “Stability of transpedicle screwing for the osteoporotic spine. An in vitro study of the mechanical stability,” Spine (Phila Pa 1976), vol. 18, no. 15, pp. 2240-5 (1993).
    [10] Gaines, R. W., Jr., “The use of pedicle-screw internal fixation for the operative treatment of spinal disorders,” J Bone Joint Surg Am, vol. 82-a, no. 10, pp. 1458-76 (2000).
    [11] Okuyama, K., Abe, E., Suzuki, T., Tamura, Y., Chiba, M., and Sato, K., “Can insertional torque predict screw loosening and related failures? An in vivo study of pedicle screw fixation augmenting posterior lumbar interbody fusion,” Spine (Phila Pa 1976), vol. 25, no. 7, pp. 858-64 (2000).
    [12] Devlin, V. J., Spine Secrets Plus, 2nd ed., Saint Louis: Mosby, (2012).
    [13] Netter, F. H., Atlas of Human Anatomy, 4th ed., Philadelphia, PA: Saunders/Elsevier, (2006).
    [14] Kapandji, I. A., The Physiology of the Joints, 6th ed., London: Churchill Livingstone/Elsevier, (2008).
    [15] Kabins, M. B. a. W., James N. , “The History of Vertebral Screw and Pedicle Screw Fixation,” Iowa Orthop J., vol. 11, pp. 127-36 (1991).
    [16] Roy-Camille, R., Saillant, G., and Mazel, C., “Plating of thoracic, thoracolumbar, and lumbar injuries with pedicle screw plates,” Orthop Clin North Am, vol. 17, no. 1, pp. 147-59 (1986).
    [17] Ferrara, L. A., Secor, J. L., Jin, B. H., Wakefield, A., Inceoglu, S., and Benzel, E. C., “A biomechanical comparison of facet screw fixation and pedicle screw fixation: effects of short-term and long-term repetitive cycling,” Spine (Phila Pa 1976), vol. 28, no. 12, pp. 1226-34 (2003).
    [18] Thompson, J. D., Benjamin, J. B., and Szivek, J. A., “Pullout strengths of cannulated and noncannulated cancellous bone screws,” Clin Orthop Relat Res, no. 341, pp. 241-9 (1997).
    [19] Cook, S. D., Salkeld, S. L., Whitecloud, T. S., 3rd, and Barbera, J., “Biomechanical evaluation and preliminary clinical experience with an expansive pedicle screw design,” J Spinal Disord, vol. 13, no. 3, pp. 230-6 (2000).
    [20] Koller, H., Zenner, J., Hitzl, W., Resch, H., Stephan, D., Augat, P., Penzkofer, R., Korn, G., Kendell, A., Meier, O., and Mayer, M., “The impact of a distal expansion mechanism added to a standard pedicle screw on pullout resistance. A biomechanical study,” Spine J, vol. 13, no. 5, pp. 532-41 (2013).
    [21] Asnis, S. E., Ernberg, J. J., Bostrom, M. P., Wright, T. M., Harrington, R. M., Tencer, A., and Peterson, M., “Cancellous bone screw thread design and holding power,” J Orthop Trauma, vol. 10, no. 7, pp. 462-9 (1996).
    [22] Brasiliense, L. B., Lazaro, B. C., Reyes, P. M., Newcomb, A. G., Turner, J. L., Crandall, D. G., and Crawford, N. R., “Characteristics of immediate and fatigue strength of a dual-threaded pedicle screw in cadaveric spines,” Spine J, vol. 13, no. 8, pp. 947-56 (2013).
    [23] Jacob, A. T., Ingalhalikar, A. V., Morgan, J. H., Channon, S., Lim, T. H., Torner, J. C., and Hitchon, P. W., “Biomechanical comparison of single- and dual-lead pedicle screws in cadaveric spine,” J Neurosurg Spine, vol. 8, no. 1, pp. 52-7 (2008).
    [24] Mummaneni, P. V., Haddock, S. M., Liebschner, M. A., Keaveny, T. M., and Rosenberg, W. S., “Biomechanical evaluation of a double-threaded pedicle screw in elderly vertebrae,” J Spinal Disord Tech, vol. 15, no. 1, pp. 64-8 (2002).
    [25] Lill, C. A., Schlegel, U., Wahl, D., and Schneider, E., “Comparison of the in vitro holding strengths of conical and cylindrical pedicle screws in a fully inserted setting and backed out 180 degrees,” J Spinal Disord, vol. 13, no. 3, pp. 259-66 (2000).
    [26] Abshire, B. B., McLain, R. F., Valdevit, A., and Kambic, H. E., “Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out,” Spine J, vol. 1, no. 6, pp. 408-14 (2001).
    [27] Lill, C. A., Schneider, E., Goldhahn, J., Haslemann, A., and Zeifang, F., “Mechanical performance of cylindrical and dual core pedicle screws in calf and human vertebrae,” Arch Orthop Trauma Surg, vol. 126, no. 10, pp. 686-94 (2006).
    [28] Chao, C. K., Lin, J., Putra, S. T., and Hsu, C. C., “A neurogenetic approach to a multiobjective design optimization of spinal pedicle screws,” J Biomech Eng, vol. 132, no. 9, pp. 091006 (2010).
    [29] Anawa, E. M., and Olabi, A. G., “Optimization of tensile strength of ferritic/austenitic laser-welded components,” Optics and Lasers in Engineering, vol. 46, no. 8, pp. 571-77 (2008).
    [30] Arvidsson, M., and Gremyr, I., “Principles of robust design methodology,” Quality and Reliability Engineering International, vol. 24, no. 1, pp. 23-35 (2008).
    [31] Beyer, H.-G., and Sendhoff, B., “Robust optimization – A comprehensive survey,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 33–34, pp. 3190-218 (2007).
    [32] Flott, L. W., “Taguchi for fun and profit,” Metal Finishing, vol. 100, no. 3, pp. 58-63 (2002).
    [33] Frey, D., Engelhardt, F., and Greitzer, E., “A role for "one-factor-at-a-time" experimentation in parameter design,” Research in Engineering Design, vol. 14, no. 2, pp. 65-74 (2003).
    [34] Jeyapaul, R., Shahabudeen, P., and Krishnaiah, K., “Quality management research by considering multi-response problems in the Taguchi method – a review,” The International Journal of Advanced Manufacturing Technology, vol. 26, no. 11-12, pp. 1331-37 (2005).
    [35] Lin, T.-R., “Experimental design and performance analysis of TiN-coated carbide tool in face milling stainless steel,” Journal of Materials Processing Technology, vol. 127, no. 1, pp. 1-7 (2002).
    [36] Ross, P. J., Taguchi Techniques for Quality Engineering, 2 ed., New York City, NY: McGraw-Hill, p.^pp. 329, (1996).
    [37] Zang, C., Friswell, M. I., and Mottershead, J. E., “A review of robust optimal design and its application in dynamics,” Computers & Structures, vol. 83, no. 4–5, pp. 315-26 (2005).
    [38] Czitrom, V., “One-Factor-at-a-Time versus Designed Experiments,” The American Statistician, vol. 53, no. 2, pp. 126-31 (1999).
    [39] Agatonovic-Kustrin, S., and Beresford, R., “Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research,” J Pharm Biomed Anal, vol. 22, no. 5, pp. 717-27 (2000).
    [40] Basheer, I. A., and Hajmeer, M., “Artificial neural networks: fundamentals, computing, design, and application,” J Microbiol Methods, vol. 43, no. 1, pp. 3-31 (2000).
    [41] Al-Bulushi, N. I., King, P. R., Blunt, M. J., and Kraaijveld, M., “Artificial neural networks workflow and its application in the petroleum industry,” Neural Computing and Applications, vol. 21, no. 3, pp. 409-21 (2012).
    [42] Ding, S., Li, H., Su, C., Yu, J., and Jin, F., “Evolutionary artificial neural networks: a review,” Artificial Intelligence Review, vol. 39, no. 3, pp. 251-60 (2013).
    [43] Yadav, A. K., and Chandel, S. S., “Solar radiation prediction using Artificial Neural Network techniques: A review,” Renewable and Sustainable Energy Reviews, vol. 33, no. 0, pp. 772-81 (2014).
    [44] Abo-Hammour, Z. S., Yusuf, M., Mirza, N. M., Mirza, S. M., Arif, M., and Khurshid, J., “Numerical solution of second-order, two-point boundary value problems using continuous genetic algorithms,” International Journal for Numerical Methods in Engineering, vol. 61, no. 8, pp. 1219-42 (2004).
    [45] Janc, K., Tarasiuk, J., Bonnet, A. S., and Lipinski, P., “Genetic algorithms as a useful tool for trabecular and cortical bone segmentation,” Computer Methods and Programs in Biomedicine, vol. 111, no. 1, pp. 72-83 (2013).
    [46] Valdez, F., Melin, P., and Licea, G., "Modular Neural Networks Architecture Optimization with a New Evolutionary Method Using a Fuzzy Combination Particle Swarm Optimization and Genetic Algorithms," Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition, Studies in Computational Intelligence P. Melin, J. Kacprzyk and W. Pedrycz, eds., pp. 199-213: Springer Berlin Heidelberg, 2009.
    [47] Hsu, C. C., Chao, C. K., Wang, J. L., and Lin, J., “Multiobjective optimization of tibial locking screw design using a genetic algorithm: Evaluation of mechanical performance,” J Orthop Res, vol. 24, no. 5, pp. 908-16 (2006).
    [48] Chao, C. K., Hsu, C. C., Wang, J. L., and Lin, J., “Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses,” J Spinal Disord Tech, vol. 21, no. 2, pp. 130-8 (2008).
    [49] Fogel, G. R., Reitman, C. A., Liu, W., and Esses, S. I., “Physical characteristics of polyaxial-headed pedicle screws and biomechanical comparison of load with their failure,” Spine (Phila Pa 1976), vol. 28, no. 5, pp. 470-3 (2003).
    [50] Paik, H., Dmitriev, A. E., Lehman, R. A., Jr., Gaume, R. E., Ambati, D. V., Kang, D. G., and Lenke, L. G., “The biomechanical effect of pedicle screw hubbing on pullout resistance in the thoracic spine,” Spine J, vol. 12, no. 5, pp. 417-24 (2012).
    [51] Oktenoglu, B. T., Ferrara, L. A., Andalkar, N., Ozer, A. F., Sarioglu, A. C., and Benzel, E. C., “Effects of hole preparation on screw pullout resistance and insertional torque: a biomechanical study,” J Neurosurg, vol. 94, no. 1 Suppl, pp. 91-6 (2001).
    [52] Cook, S. D., Salkeld, S. L., Stanley, T., Faciane, A., and Miller, S. D., “Biomechanical study of pedicle screw fixation in severely osteoporotic bone,” Spine J, vol. 4, no. 4, pp. 402-8 (2004).
    [53] Halvorson, T. L., Kelley, L. A., Thomas, K. A., Whitecloud, T. S., 3rd, and Cook, S. D., “Effects of bone mineral density on pedicle screw fixation,” Spine (Phila Pa 1976), vol. 19, no. 21, pp. 2415-20 (1994).
    [54] Wall, S. J., Soin, S. P., Knight, T. A., Mears, S. C., and Belkoff, S. M., “Mechanical evaluation of a 4-mm cancellous "rescue" screw in osteoporotic cortical bone: a cadaveric study,” J Orthop Trauma, vol. 24, no. 6, pp. 379-82 (2010).
    [55] Katonis, P., Christoforakis, J., Kontakis, G., Aligizakis, A. C., Papadopoulos, C., Sapkas, G., and Hadjipavlou, A., “Complications and problems related to pedicle screw fixation of the spine,” Clin Orthop Relat Res, no. 411, pp. 86-94 (2003).
    [56] Misenhimer, G. R., Peek, R. D., Wiltse, L. L., Rothman, S. L., and Widell, E. H., Jr., “Anatomic analysis of pedicle cortical and cancellous diameter as related to screw size,” Spine (Phila Pa 1976), vol. 14, no. 4, pp. 367-72 (1989).
    [57] Hashemi, A., Bednar, D., and Ziada, S., “Pullout strength of pedicle screws augmented with particulate calcium phosphate: an experimental study,” Spine J, vol. 9, no. 5, pp. 404-10 (2009).
    [58] Johnson, A. E., and Keller, T. S., “Mechanical properties of open-cell foam synthetic thoracic vertebrae,” J Mater Sci Mater Med, vol. 19, no. 3, pp. 1317-23 (2008).
    [59] Mehmanparast, H. N., Mac-Thiong, J.M. and Petit, Y., “Compressive properties of a synthetic bone substitute for vertebral cancellous bone ” Int J Med Biol Sci, vol. 6, pp. 287-90 (2012).
    [60] Kopperdahl, D. L., and Keaveny, T. M., “Yield strain behavior of trabecular bone,” J Biomech, vol. 31, no. 7, pp. 601-8 (1998).
    [61] Chapman, J. R., Harrington, R. M., Lee, K. M., Anderson, P. A., Tencer, A. F., and Kowalski, D., “Factors affecting the pullout strength of cancellous bone screws,” J Biomech Eng, vol. 118, no. 3, pp. 391-8 (1996).
    [62] Mehta, H., Santos, E., Ledonio, C., Sembrano, J., Ellingson, A., Pare, P., Murrell, B., and Nuckley, D. J., “Biomechanical analysis of pedicle screw thread differential design in an osteoporotic cadaver model,” Clin Biomech (Bristol, Avon), vol. 27, no. 3, pp. 234-40 (2012).
    [63] Griza, S., de Andrade, C. E. C., Batista, W. W., Tentardini, E. K., and Strohaecker, T. R., “Case study of Ti6Al4V pedicle screw failures due to geometric and microstructural aspects,” Engineering Failure Analysis, vol. 25, no. 0, pp. 133-43 (2012).
    [64] Chen, S. I., Lin, R. M., and Chang, C. H., “Biomechanical investigation of pedicle screw-vertebrae complex: a finite element approach using bonded and contact interface conditions,” Med Eng Phys, vol. 25, no. 4, pp. 275-82 (2003).
    [65] Chen, C. S., Chen, W. J., Cheng, C. K., Jao, S. H., Chueh, S. C., and Wang, C. C., “Failure analysis of broken pedicle screws on spinal instrumentation,” Med Eng Phys, vol. 27, no. 6, pp. 487-96 (2005).
    [66] Fakhouri, S. F., Zamarioli A., Wichr, C. R. G., Araujo, C. A., Defino, H. L. A., and Shimano, A. C. , “Biomechanical Study of the Pullout Resistance in Screws of a Vertebral Fixation System,” Advances in Mechanical Engineering, vol. 2011 (2011).
    [67] Johnston, T. L., Karaikovic, E. E., Lautenschlager, E. P., and Marcu, D., “Cervical pedicle screws vs. lateral mass screws: uniplanar fatigue analysis and residual pullout strengths,” Spine J, vol. 6, no. 6, pp. 667-72 (2006).
    [68] Palmer, D. K., Rios, D., Patacxil, W. M., Williams, P. A., Cheng, W. K., and İnceoğlu, S., “Pullout of a lumbar plate with varying screw lengths,” The International Journal of Spine Surgery, vol. 6, no. 1, pp. 8-12 (2012).
    [69] Ruland, C. M., McAfee, P. C., Warden, K. E., and Cunningham, B. W., “Triangulation of pedicular instrumentation. A biomechanical analysis,” Spine (Phila Pa 1976), vol. 16, no. 6 Suppl, pp. S270-6 (1991).
    [70] Battula, S., Schoenfeld, A. J., Sahai, V., Vrabec, G. A., Tank, J., and Njus, G. O., “The effect of pilot hole size on the insertion torque and pullout strength of self-tapping cortical bone screws in osteoporotic bone,” J Trauma, vol. 64, no. 4, pp. 990-5 (2008).
    [71] Daftari, T. K., Horton, W. C., and Hutton, W. C., “Correlations between screw hole preparation, torque of insertion, and pullout strength for spinal screws,” J Spinal Disord, vol. 7, no. 2, pp. 139-45 (1994).
    [72] Defino, H. L., Rosa, R. C., Silva, P., Shimano, A. C., Volpon, J. B., de Paula, F. J., Schleicher, P., Schnake, K., and Kandziora, F., “The effect of repetitive pilot-hole use on the insertion torque and pullout strength of vertebral system screws,” Spine (Phila Pa 1976), vol. 34, no. 9, pp. 871-6 (2009).
    [73] George, D. C., Krag, M. H., Johnson, C. C., Van Hal, M. E., Haugh, L. D., and Grobler, L. J., “Hole preparation techniques for transpedicle screws. Effect on pull-out strength from human cadaveric vertebrae,” Spine (Phila Pa 1976), vol. 16, no. 2, pp. 181-4 (1991).
    [74] Helgeson, M. D., Kang, D. G., Lehman, R. A., Jr., Dmitriev, A. E., and Luhmann, S. J., “Tapping insertional torque allows prediction for better pedicle screw fixation and optimal screw size selection,” Spine J, vol. 13, no. 8, pp. 957-65 (2013).
    [75] Hitchon, P. W., Brenton, M. D., Coppes, J. K., From, A. M., and Torner, J. C., “Factors affecting the pullout strength of self-drilling and self-tapping anterior cervical screws,” Spine (Phila Pa 1976), vol. 28, no. 1, pp. 9-13 (2003).
    [76] Kuklo, T. R., and Lehman, R. A., Jr., “Effect of various tapping diameters on insertion of thoracic pedicle screws: a biomechanical analysis,” Spine (Phila Pa 1976), vol. 28, no. 18, pp. 2066-71 (2003).
    [77] Kunkel, K. A., Suber, J. T., Gerard, P. D., and Kowaleski, M. P., “Effect of pilot hole diameter and tapping on insertion torque and axial pullout strength of 4.0-mm cancellous bone screws,” Am J Vet Res, vol. 72, no. 12, pp. 1660-5 (2011).
    [78] Ronderos, J. F., Jacobowitz, R., Sonntag, V. K., Crawford, N. R., and Dickman, C. A., “Comparative pull-out strength of tapped and untapped pilot holes for bicortical anterior cervical screws,” Spine (Phila Pa 1976), vol. 22, no. 2, pp. 167-70 (1997).
    [79] Kim, Y. Y., Choi, W. S., and Rhyu, K. W., “Assessment of pedicle screw pullout strength based on various screw designs and bone densities-an ex vivo biomechanical study,” Spine J, vol. 12, no. 2, pp. 164-8 (2012).
    [80] Rohlmann, A., Graichen, F., and Bergmann, G., “Loads on an internal spinal fixation device during physical therapy,” Phys Ther, vol. 82, no. 1, pp. 44-52 (2002).
    [81] Rohlmann, A., Graichen, F., Weber, U., and Bergmann, G., “2000 Volvo Award winner in biomechanical studies: Monitoring in vivo implant loads with a telemeterized internal spinal fixation device,” Spine (Phila Pa 1976), vol. 25, no. 23, pp. 2981-6 (2000).
    [82] Yerby, S. A., Ehteshami, J. R., and McLain, R. F., “Loading of pedicle screws within the vertebra,” J Biomech, vol. 30, no. 9, pp. 951-4 (1997).

    QR CODE