簡易檢索 / 詳目顯示

研究生: 朱晏辰
Yen-Chen Chu
論文名稱: 多角度平面波互補發射事件結合DMAS波束成形於同調性超音波功率都卜勒偵測
DMAS beamforming with complementary subset transmit for ultrasound coherence-based power Doppler detection in multi-angle plane-wave imaging
指導教授: 沈哲州
Che-Chou Shen
口試委員: 廖愛禾
Ai-Ho Liao
鄭耿璽
Geng-Shi Jeng
李夢麟
Meng-Lin Li
謝寶育
Bao-Yu Hsieh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 133
中文關鍵詞: 延遲加總法延遲相乘加總信號相關性功率都卜勒 偵測平面波成像互補發射事件同調平面波複合
外文關鍵詞: delay-and-sum (DAS), delay-multiply-and-sum (DMAS), signal coherence, power doppler detection, plane-wave (PW) imaging, complementary subset transmit (CST), coherent planewave compounding (CPWC)
相關次數: 點閱:265下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統發射聚焦超音波透過逐條建構掃描線完成單張超音波影像,面臨了低畫面幀率的問題,而能被用來提高畫面幀率的單一平面波成像或是多角度平面波成像則會遇上影像品質較差的挑戰。多角度平面波複合成像使用延遲加總(DAS)於不同發射角度上的低解析度影像,複合出一張高解析度影像,以得到與發射聚焦差不多的影像品質,然而高幀率與可使用的平面波角度間存在權衡,發射平面波角度數量會影響影像品質。
    延遲相乘加總(DMAS)成像能針對接收通道對或是發射事件信號間進行耦合相乘,利用信號的空間相關性提升影像解析度與對比度,並藉由p 值的設定來決定仰賴信號相關性的程度。本論文在不同發射角度上以DMAS 波束成形取代傳統DAS 波束成形,可以有效降低影像雜訊並達到可以使用的影像品質,此方法具體做法為保留時間延遲後的複數信號相位,並將其振幅開p 次方根,在不同發射角度將信號加總後進行p 次方計算以恢復原始信號維度,由此得到高解析度影像。因為使用的是不同發射角度的低解析度影像信號,因此與傳統其他應用於接收通道間的可適性波束成形方法相比,不須大量的儲存空間,可有效降低軟硬體負擔。
    本論文中將 DMAS 波束成形應用於功率都卜勒血流偵測中,取代傳統多角度平面波複合成像中的DAS 波束成形,透過考量信號相關性,能得到較好的影像品質。並提出了新穎的互補發射事件(CST)技術,透過施加權重於多角度平面波發射事件間,進一步抑制雜訊對血流偵測的影響,在模擬及實驗都能觀測到其效果。
    在血流模擬中單獨使用DMAS 波束成形技術並將p 值設定為2取代傳統DAS 波束成形時,比較功率都卜勒影像能夠得到都卜勒SNR 8.2 dB 的提升,並且透過進一步使用CST 技術,都卜勒SNR能得到另外6 dB 的提升。而CST 權重施加方法也能單獨使用於傳統DAS 波束成形中,功率都卜勒影像也能得到較小幅度的改善。另外,在實驗中,DMAS 波束成形以及CST 技術也都各自展現其效果,且因其不需額外儲存空間的緣故,此方法有望能直接取代DAS波束成形,對於臨床應用有著不小的潛力。


    Conventional transmit focused ultrasound construct a single ultrasound image by line-by-line scanning, which faces the problem of low frame rate. However, single plane wave imaging or multi-angle plane wave imaging that can be used to increase the frame rate will encounter the challenge of poor image quality. Multi-angle plane wave composite imaging uses delay-and-sum (DAS) to combine low-resolution images at different transmit angles to compound a high-resolution image, which getting similar image quality to conventional techniques. There is a tradeoff between frame rate and usable transmit angles of the plane wave. The number of angles of the plane wave will affect the image quality.
    Delay-Multiply-Sum (DMAS) imaging can couple and multiply the receiving channel pair or the transmitted event signal, use the spatial correlation of the signal to improve the image resolution and contrast, and determine the dependence of signal correlation by setting the p value. In this paper, DMAS beamforming is used to replace conventional DAS beamforming at different transmit angles, which can effectively reduce image clutter and achieve usable image quality. The specific method of this technique scales the magnitude of time-delayed signal by p -th root while maintaining the phase. After the summation between different transmit events the output signal is restored by p -th power. The method uses low-resolution image signals with different transmit events, so it is different from other traditional adaptive beamforming methods which apply between receiving channels. The aforementioned method does not
    require a large amount of storage space, and can effectively reduce the burden on software and hardware.
    In this paper, DMAS beamforming is applied to power Doppler blood flow detection, instead of DAS beamforming in conventional multi-angle plane wave composite imaging. By considering signal correlation, better image quality can be obtained. A novel complementary subset transmit(CST) technology is proposed, which further suppresses the influence of noise on blood flow detection by applying weights between multi-angle plane wave events.
    Taking the blood flow simulation as an example, when DMAS beamforming is used alone and the p value is set to 2 to replace traditional DAS beamforming, the Doppler SNR can be improved by 8.2 dB compared with the power Doppler image, and through the further use of CST technology, Doppler SNR can get another 6 dB improvement. The
    CST method can also be used in traditional DAS beamforming, and the power Doppler image can also perform a smaller improvement. In experiments, both DMAS beamforming and CST technology have shown their respective effects. It should be noted that the technique does not require additional storage space, and could directly replace DAS
    beamforming. Making a great potential for clinical applications.

    目錄 摘要............................................................................................................. i ABSTRACT.............................................................................................. iii 致謝.............................................................................................................v 目錄........................................................................................................... vi 圖目錄....................................................................................................... ix 表目錄...................................................................................................... xii 緒論........................................................................................1 1-1 醫用超音波成像原理.................................................................1 1-1-1 超音波基礎原理..............................................................1 1-1-2 發射聚焦與 DAS 陣列成像原理....................................3 1-1-3 多角度平面波..................................................................7 1-2 血流偵測原理介紹...................................................................10 1-2-1 都卜勒效應....................................................................10 1-2-2 頻譜都卜勒....................................................................13 1-2-3 Power/Color Doppler ......................................................16 1-2-4 微氣泡用於血液灌流造影............................................19 1-3 腎臟、腦部血管變異疾病介紹...............................................22 1-4 研究動機與目的.......................................................................24 先進成像技術與其血流偵測應用之相關文獻..................25 2-1 Short-lag spatial coherence ........................................................25 2-2 Coherent flow Power Doppler....................................................29 2-3 Dual apodization with cross-correlation ....................................32 2-4 Acoustic Sub-Aperture Imaging.................................................36 研究原理與方法..................................................................42 3-1 Coherent Plane-wave Compounding..........................................42 3-2 延遲相乘加總法與CPWC.......................................................46 3-3 DMAS 功率都卜勒偵測...........................................................51 3-4 互補發射事件Complementary subset transmit......................54 3-5 SVD-based-wall-filter ................................................................58 3-6 模擬架設方法...........................................................................62 3-7 兔子腎臟實驗架設方法...........................................................65 3-8 大鼠腦部實驗架設方法...........................................................67 3-9 定性分析 ...................................................................................69 研究結果..............................................................................71 4-1 模擬結果 ...................................................................................71 4-1-1 影像品質定性分析........................................................71 4-1-2 影像品質定量分析........................................................74 4-1-3 影像品質與角度數量的關係........................................77 4-1-4 影像品質與流速的關係................................................79 4-2 兔子腎臟實驗結果...................................................................82 4-2-1 影像品質定性分析........................................................82 4-2-2 影像品質定量分析........................................................84 4-3 大鼠腦部實驗結果...................................................................87 討論與結論..........................................................................89 5-1 P 值對進一步提升影像品質之影響.........................................91 5-2 平面波角度數量與功率都卜勒影像品質...............................93 5-3 互補發射事件ensemble 數量影響..........................................94 5-4 CST 方法對於信號強度的影響................................................96 5-5 DMAS 計算複雜度.................................................................103 未來工作............................................................................104 6-1 DMAS 波束成形於frame 間之應用......................................104 6-2 血流方向判定.........................................................................107 6-3 模擬流速調整.........................................................................110 參考文獻.................................................................................................113

    [1] 沈哲州,「醫用超音波上課講義」,國立臺灣科技大學電機所, 民國109年。
    [2] J. Capon, "High-resolution frequency-wavenumber spectrum analysis," Proceedings of the IEEE, vol. 57, no. 8, pp. 1408-1418, 1969
    [3] M. Tanter and M. Fink, "Ultrafast imaging in biomedical ultrasound," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 61, no. 1, pp. 102-119, 2014
    [4] G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, "Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 3, pp. 489-506, 2009
    [5] N. d. Jong, "Improvements in ultrasound contrast agents," IEEE Engineering in Medicine and Biology Magazine, vol. 15, no. 6, pp. 72-82, 1996
    [6] W. T. Shi and F. Forsberg, "Ultrasonic characterization of the nonlinear properties of contrast microbubbles," Ultrasound in Medicine & Biology, vol. 26, no. 1, pp. 93-104, 2000
    [7] C. Pi Hsien, K. K. Shun, W. Shih-Jeh, and H. B. Levene, "Second harmonic imaging and harmonic Doppler measurements with Albunex," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 42, no. 6, pp. 1020-1027, 19954
    [8] N. de Jong, M. Emmer, A. van Wamel, and M. Versluis, "Ultrasonic characterization of ultrasound contrast agents," Medical & Biological Engineering & Computing, vol. 47, no. 8, pp. 861-873, 2009
    [9] M. Tang and R. J. Eckersley, "Nonlinear propagation of ultrasound through microbubble contrast agents and implications for imaging," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, no. 12, pp. 2406-2415, 2006
    [10] 衛生福利部,疾病管制署,https://www.cdc.gov.tw/,民國110年。
    [11] G. Matrone, A. S. Savoia, G. Caliano, and G. Magenes, "The Delay Multiply and Sum Beamforming Algorithm in Ultrasound B-Mode Medical Imaging," IEEE Transactions on Medical Imaging, vol. 34, no. 4, pp. 940-949, 2015
    [12] A. Stanziola, C. H. Leow, E. Bazigou, P. D. Weinberg, and M. X. Tang, "ASAP: Super-Contrast Vasculature Imaging Using Coherence Analysis and High Frame-Rate Contrast Enhanced Ultrasound," IEEE Transactions on Medical Imaging, vol. 37, no. 8, pp. 1847-1856, 2018
    [13] C. H. Leow et al., "3-D Microvascular Imaging Using High Frame Rate Ultrasound and ASAP Without Contrast Agents: Development and Initial In Vivo Evaluation on Nontumor and Tumor Models," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 66, no. 5, pp. 939-948, 2019
    [14] C. HauLeow et al., "Contrast vs Non-Contrast Enhanced Microvascular Imaging Using Acoustic Sub-Aperture Processing (ASAP): In Vivo Demonstration," in 2018 IEEE International Ultrasonics Symposium (IUS), 22-25, 2018
    [15] J. V. Tsyganova and M. V. Kulikova, "SVD-Based Kalman Filter Derivative Computation," IEEE Transactions on Automatic Control, vol. 62, no. 9, pp. 4869-4875, 2017
    [16] P. Song and S. Chen, "Spatiotemporal clutter filtering methods for in vivo microvessel imaging," The Journal of the Acoustical Society of America, vol. 143, no. 3, pp. 1900-1900, 2018
    [17] W. Guo, Y. Wang, and J. Yu, "A Sibelobe Suppressing Beamformer for Coherent Plane Wave Compounding," Applied Sciences, vol. 6, no. 11, 2016
    [18] A. A. Nair, T. D. Tran, and M. A. L. Bell, "Robust Short-Lag Spatial Coherence Imaging," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 65, no. 3, pp. 366-377, 2018
    [19] M. A. Lediju, G. E. Trahey, B. C. Byram, and J. J. Dahl, "Short-lag spatial coherence of backscattered echoes: imaging characteristics," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 7, pp. 1377-1388, 2011
    [20] Y. L. Li and J. J. Dahl, "Coherent flow power doppler (CFPD): flow detection using spatial coherence beamforming," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 62, no. 6, pp. 1022-1035, 2015
    [21] D. A. Guenther and W. F. Walker, "Optimal apodization design for medical ultrasound using constrained least squares part I: theory," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 2, pp. 332-342, 2007
    [22] D. A. Guenther and W. F. Walker, "Optimal apodization design for medical ultrasound using constrained least squares part II simulation results," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 2, pp. 343-358, 2007
    [23] H. C. Stankwitz, R. J. Dallaire, and J. R. Fienup, "Nonlinear apodization for sidelobe control in SAR imagery," IEEE Transactions on Aerospace and Electronic Systems, vol. 31, no. 1, pp. 267-279, 1995
    [24] C. H. Seo and J. T. Yen, "Sidelobe suppression in ultrasound imaging using dual apodization with cross-correlation," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, no. 10, pp. 2198-2210, 2008
    [25] C.-C. Shen and P.-Y. Hsieh, "Ultrasound Baseband Delay-Multiply-and-Sum (BB-DMAS) nonlinear beamforming," Ultrasonics, vol. 96, pp. 165-174, 2019
    [26] G. Matrone, A. S. Savoia, G. Caliano, and G. Magenes, "Ultrasound plane-wave imaging with delay multiply and sum beamforming and coherent compounding," in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016
    [27] J. M. Rubin, R. O. Bude, P. L. Carson, R. L. Bree, and R. S. Adler, "Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US," Radiology, vol. 190, no. 3, pp. 853-856, 1994
    [28] R. O. Bude and J. M. Rubin, "Power Doppler sonography," Radiology, vol. 200, no. 1, pp. 21-23, 1996
    [29] T. Loupas, R. B. Peterson, and R. W. Gill, "Experimental evaluation of velocity and power estimation for ultrasound blood flow imaging, by means of a two-dimensional autocorrelation approach," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 42, no. 4, pp. 689-699, 1995
    [30] L. Yong and S. Parker, "FIR filter design over a discrete powers-of-two coefficient space," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 31, no. 3, pp. 583-591, 1983
    [31] N. Karaboga, "Digital IIR Filter Design Using Differential Evolution Algorithm," EURASIP Journal on Advances in Signal Processing, vol. 2005, no. 8, 2005
    [32] F. W. Mauldin, D. Lin, and J. A. Hossack, "The Singular Value Filter: A General Filter Design Strategy for PCA-Based Signal Separation in Medical Ultrasound Imaging," IEEE Transactions on Medical Imaging, vol. 30, no. 11, pp. 1951-1964, 2011
    [33] J. A. Jensen and N. B. Svendsen, "Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 39, no. 2, pp. 262-267, 1992
    [34] P. Song, A. Manduca, J. D. Trzasko, and S. Chen, "Ultrasound Small Vessel Imaging With Block-Wise Adaptive Local Clutter Filtering," IEEE Transactions on Medical Imaging, vol. 36, no. 1, pp. 251-262, 2017
    [35] J. Kang, D. Go, I. Song, and Y. Yoo, "Ultrafast Power Doppler Imaging Using Frame-Multiply-and-Sum-Based Nonlinear Compounding," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 68, no. 3, pp. 453-464, 2021

    無法下載圖示 全文公開日期 2024/10/13 (校內網路)
    全文公開日期 2031/10/13 (校外網路)
    全文公開日期 2031/10/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE