簡易檢索 / 詳目顯示

研究生: 杜冠霖
Kuan-Lin Tu
論文名稱: 超音波DMAS波束成形於多角度平面波成像中估計組織聲速及血流流速
Ultrasound DMAS beamforming for estimation of tissue speed of sound (SOS) and flow velocity of blood in multi-angle plane-wave imaging
指導教授: 沈哲州
Che-Chou Shen
口試委員: 李百祺
Pai-Chi Li
廖愛禾
Ai-Ho Liao
謝寶育
Bao-Yu Hsieh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 108
中文關鍵詞: 基頻延遲相乘加總成像多角度平面波成像相位同調因子組織聲速估計最佳成像聲速最小方差向量都卜勒斑點追蹤血流流速估計
外文關鍵詞: Baseband delay-multiply-and-sum, Multi-angle plane-wave imaging, Phase coherent factor, Estimation of tissue speed of sound, Optimal beamforming velocity, Least-squares vector doppler, speckle tracking, Estimation of flow velocity of blood
相關次數: 點閱:215下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超音波多角度平面波延遲相乘加總(Delay-multiply-and-sum, DMAS)成像透過發射事件(Tx-DMAS)、接收通道(Rx-DMAS)或兩者(2D-DMAS)的信號相關性以抑制低相關性雜波,但其成像聲速是否正確對應傳播介質組織聲速(Speed of Sound, SOS)仍是維持影像品質的基本要求。目前已有許多利用接收通道信號或影像品質分析估計傳播介質組織平均聲速的方法但皆不是針對多角度平面波成像特性所開發的,因此在本研究的第一部分中,我們進一步擴展多角度平面波DMAS成像以量化信號相關性程度,並將其用於估計多角度平面波成像中的組織聲速。此外多角度平面波DMAS影像因強調信號相關性而會具有較明顯的斑點顆粒特徵,因此在本研究的第二部分中,我們也將探討多角度平面波DMAS影像用於斑點追蹤以改善血流流速估計的可行性。
    在本論文第一部分中,我們將所得的多角度平面波DMAS影像與傳統同調性平面波複合(Coherent Plane-wave Compounding, CPWC)影像之間的像素值比定義為相位同調因子(Phase Coherent Factor, PCF)。當成像聲速(Cbeam)與實際組織聲速不匹配時,由於聚焦誤差增大使得信號相關性降低,並導致相位同調因子值減小。在計算多個成像聲速下的相位同調因子後,具有最大相位同調因子值的成像聲速即為最佳成像聲速(Copt),最佳成像聲速也對應我們所估計的實際組織聲速。
    PICMUS模擬數據結果指出,當接收孔徑變大且通道訊雜比變大時,最佳成像聲速估計結果將更加準確,在三種DMAS成像方法中,Tx-DMAS在較低通道訊雜比的情況下可以使用較小的接收孔徑提供具有最小偏誤及標準差的最佳成像聲速估計結果,此外,本研究提出的最佳成像聲速估計方法當多角度平面波DMAS成像的p值不小於2時表現將會趨於穩定。在PICMUS實驗數據中,我們所提出的相位同調因子方法所估計的最佳成像聲速確實具有最佳的圖像品質。而在Prodigy成像系統實驗數據中,透過Tx-DMAS所估計的最佳成像聲速為1426±6 m/s,透過2D-DMAS以及Rx-DMAS所估計的最佳成像聲速皆為1428±4 m/s,與使用單一元件探頭通過脈衝回波法測得的實際組織聲速(1427 m/s)非常接近,也與具有最小-6-dB橫向寬度的成像聲速以及具有最佳對比度的成像聲速誤差在10 m/s內。
    在本論文第二部分中,我們結合最小方差向量都卜勒(Least-Squares Vector Doppler, VD)以及一維斑點追蹤(Speckle Tracking, ST)進行二維血流流速估計,該血流流速估計方法能夠改善VD橫向分量估計結果不準確以及二維ST計算量過大的缺點,其中ST將於斑點顆粒特徵明顯的多角度平面波DMAS影像上進行血流流速估計。
    模擬結果可以發現對影像進行一維斑點追蹤估計血流流速橫向分量時,多角度平面波DMAS相較於傳統CPWC(亦即2D-DAS)的血流流速估計表現而言並沒有太大的幫助,舉例而言,雖然Tx-DMAS成像雖然在訊雜比不小於-15 dB的情況下可有較低的血流估計偏誤與標準差,但其改善程度皆不到於最高流速的1 %。至於2D-DMAS以及Rx-DMAS甚至在訊雜比大於0 dB的情況下反而有較高的血流估計偏誤與標準差,此外當DMAS成像p值變大時估計結果會更差。通過對多角度平面波DMAS影像進行一維斑點追蹤的效果不佳,因為DMAS波束成形技術本身特性會產生乘性雜訊使得血流散射子在影像間相似降低,斑點追蹤演算法容易算出錯誤的結果反而降低血流流速估計的準確度。


    Ultrasound multi-angle plane-wave (PW) delay-multiply-and-sum (DMAS) imaging uses the signal coherence among transmit events (Tx-DMAS), receive channels (Rx-DMAS) or both (2D-DMAS) to suppress low-coherence clutters. However, whether the beamforming velocity (Cbeam) correctly corresponds to the sound velocity of the propagating medium is still a basic requirement for maintaining image quality. Various methods have been proposed to estimate the average tissue speed of sound (SOS) of propagating medium by using the received channel signal or the image quality analysis, but none of them are developed for the characteristics of multi-angle PW imaging. Therefore, in the first part of this study, we further extend the multi-angle PW DMAS imaging to quantify the level of signal coherence for estimating the tissue SOS in multi-angle PW imaging. In addition, multi-angle PW DMAS images will have more obvious speckle characteristics due to the emphasis on signal coherence. Therefore, in the second part of this study, we will also discuss the feasibility of multi-angle PW images for speckle tracking to improve the estimation of flow velocity of blood.
    In the first part of this paper, we defined the pixel value ratio between the obtained multi-angle PW DMAS image and the traditional coherent PW compounding (CPWC) image as the phase coherent factor (PCF). When the Cbeam mismatch the true SOS, the signal coherence of echo matrix decreases due to elevated focusing error and thus leads to reduced PCF value. After calculating the PCFs at various Cbeam, the Cbeam with the largest PCF value is the optimal beamforming velocity (Copt) which corresponds to the tissue SOS estimated in our method.
    The results of the PICMUS simulation dataset indicates that, when the Rx aperture becomes larger and the channel signal-to-noise ratio (SNR) increases, the estimation of Copt will be more accurate. Among the three DMAS imaging methods, Tx-DMAS can use a smaller Rx aperture to provide a Copt estimation result with the smallest deviation and standard deviation, especially in the low channel SNR situation. In addition, the Copt estimation method proposed in this study will tend to stabilize when the p-value of DMAS imaging is not less than 2. In the PICMUS experimental dataset, the Copt estimated by our proposed method does have the best image quality. In the experimental dataset of Prodigy imaging system, the Copt estimated by Tx-DMAS is 1426±6 m/s, and the Copt estimated by Rx-DMAS and 2D-DMAS are 1426±6 m/s, all are very close to the actual tissue SOS (1427 m/s) measured by pulse-echo method using a single-element probe. The estimated Copt also correspond to the Cbeam with the minimal -6-dB lateral width (LW) and the maximal contrast (CR) within an error of 10 m/s.
    In the second part of this paper, we combine the least-squares vector doppler (VD) and one-dimensional (1D) speckle tracking (ST) to estimate two-dimensional (2D) flow velocity of blood. This method can improve the disadvantages of inaccurate lateral component of estimation in VD method and lager computational complexity in 2D ST. And ST will perform on the multi-angle PW DMAS images which have obvious particle characteristics of speckle to estimate flow velocity of blood.
    The simulation results indicate that when performing 1D ST on the image to estimate the lateral component of flow velocity of blood, the multi-angle PW DMAS imaging is not helpful compared to the traditional CPWC imaging (that is, 2D-DAS). For example, although Tx-DMAS imaging can have a lower flow estimation error and standard deviation when the flow channel SNR is not less than -15 dB, its improvement is less than 1% of the maximum flow velocity. As for 2D-DMAS and Rx-DMAS, even when the flow channel SNR is greater than 0 dB, they have higher flow estimation errors and standard deviations. In addition, the estimation results will be worse when the p-value of DMAS imaging becomes larger. The effect of performing 1D ST on multi-angle PW DMAS images is not good, because the characteristics of DMAS beamforming technique will produce multiplicative noises that reduce the similarity of blood flow scatterers between images. Thus, the ST algorithms tend to calculate wrong results and reduce the accuracy of the estimation of flow velocity of blood.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 第1章 緒論 1-1 醫用超音波基本原理 1-2 多角度平面波成像與成像聲速 1-3 DMAS波束成形技術 1-4 DMAS波束成形技術於多角度平面波成像 1-5 多角度平面波流速估計 1-6 研究動機與目的 第2章 文獻回顧 2-1 最佳成像聲速估計 2-1-1 於波束成像前估計最佳成像聲速 接收通道波行曲率擬合法 最小平均相位方差法 空間相關性法 通道域相位梯度差值法 2-1-2 於波束成像後估計最佳成像聲速 影像橫向空間頻譜分析法 背景斑點分析法 影像邊緣銳利度分析法 2-2 血流流速估計 第3章 研究原理與方法 3-1 最佳成像聲速估計 3-1-1 多角度平面波DMAS成像之相位同調因子 3-1-2 PICMUS模擬設置與方法 3-1-3 PICMUS實驗設置與方法 3-1-4 Prodigy成像系統實驗設置與方法 3-2 血流流速估計 3-2-1 斑點追蹤結合最小方差向量都卜勒 3-2-2 模擬設置與方法 第4章 研究結果與討論 4-1 最佳成像聲速估計 4-1-1 PICMUS模擬結果與討論 圖像品質分析 通道訊雜比、接收孔徑大小以及成像方法對最佳成像聲速估計的影響 p值大小對最佳成像聲速估計的影響 4-1-2 PICMUS實驗結果與討論 圖像品質分析 最佳成像聲速估計 4-1-3 Prodigy成像系統實驗結果與討論 實際組織聲速量測 圖像品質分析 最佳成像聲速估計 4-2 血流流速估計 Wall filter濾波順序對去除組織信號以及血流流速估計的影響 成像方法對血流流速估計的影響 p值大小對血流流速估計的影響 第5章 結論與討論 第6章 參考文獻

    [1] 沈哲州,「醫用超音波影像上課講義」,國立台灣科技大學電機所,民國107年。
    [2] Mickael Tanter, and Mathias Fink. "Ultrafast imaging in biomedical ultrasound." IEEE Trans. Ultrason. Ferroelectr. Freq. control 61.1 (2014): 102-119.
    [3] Gabriel Montaldo, Mickaël Tanter, Jérémy Bercof, Nicolas Benech, and Mathias Fink. "Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography." IEEE Trans. Ultrason. Ferroelectr. Freq. control 56.3 (2009): 489-506.
    [4] Giulia Matrone, Alessandro Stuart Savoia, Giosuè Caliano, and Giovanni Magenes. "The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging." IEEE Tran. Med. Imag. 34.4 (2014): 940-949.
    [5] Che-Chou Shen, and Pei-Ying Hsieh. "Ultrasound baseband delay-multiply-and-sum (BB-DMAS) nonlinear beamforming." Ultrasonics 96 (2019): 165-174.
    [6] Che-Chou Shen, and Pei-Ying Hsieh. "Two-Dimensional Spatial Coherence for Ultrasonic DMAS Beamforming in Multi-Angle Plane-Wave Imaging." Applied Sciences 9.19 (2019): 3973.
    [7] Matrone, Giulia, et al. "Ultrasound plane-wave imaging with delay multiply and sum beamforming and coherent compounding." Annual International Conference of the IEEE EMBC. (2016) 3223-3226.
    [8] D. Go, J. Kang, and Y. Yoo. "A New Compounding Method for High Contrast Ultrafast Ultrasound Imaging Based on Delay Multiply and Sum. " Proc. IEEE Ultrason. Symp. (2018).
    [9] Billy Y. S. Yiu, and Alfred C. H. Yu. "Least-squares multi-angle Doppler estimators for plane-wave vector flow imaging." IEEE Trans. Ultrason. Ferroelectr. Freq. control 63.11 (2016): 1733-1744.
    [10] Abigail Swillens, Patrick Segers, Hans Torp, and Lasse Løvstakken. "Two-dimensional blood velocity estimation with ultrasound: speckle tracking versus crossed-beam vector Doppler based on flow simulations in a carotid bifurcation model." IEEE Trans. Ultrason. Ferroelectr. Freq. control 57.2 (2010): 327-339.
    [11] Martin E. Anderson, and Gregg E. Trahey. "The direct estimation of sound speed using pulse–echo ultrasound. " J. Acoust. Soc. Am. 104.5 (1998): 3099-3106.
    [12] Changhan Yoo, Yuhwa Lee, Jin Ho Chang, Tai-Kyong Song, and Yangmo Yoo. "In vitro estimation of mean sound speed based on minimum average phase variance in medical ultrasound imaging." Ultrasonics 51.7 (2011): 795-802.
    [13] Marion Imbault, Alex Faccinetto, Bruno-Félix Osmanski, Antoine Tissier, Thomas Deffieux, Jean-Luc Gennisson, Valérie Vilgrain, and Mickaël Tanter. "Robust sound speed estimation for ultrasound-based hepatic steatosis assessment." Phys. Med. Biol. 62.9 (2017): 3582.
    [14] Che-Chou Shen, and Hsiao-Chi Yang. "Adaptive optimization of ultrasound beamforming sound velocity using sub-aperture differential phase gradient." Ultrasonics 79 (2017): 52-59.
    [15] Che-Chou Shen, Sheng-Hsuan Hsiao, and Yen-Chung Lin. "Synthetic transmit aperture beamforming for sound velocity estimation using channel-domain differential phase gradient–A phantom study." Ultrasonics 94 (2019): 183-191.
    [16] David Napolitano, Ching-Hua Chou, Glen McLaughlin, Ting-Lan Ji, Larry Mo, Derek DeBusschere, Robert Steins. "Sound speed correction in ultrasound imaging." Ultrasonics 44 (2006): e43-e46.
    [17] Xiaolei Qu, Takashi Azuma, Jack T. Liang, and Yoshikazu Nakajima. "Average sound speed estimation using speckle analysis of medical ultrasound data." Int. J. CARS. 7.6 (2012): 891-899.
    [18] Changhan Yoon, Haijin Seo, Yuhwa Lee, Yangmo Yoo, Tai-Kyong Song, and Jin Ho Chang. "Optimal sound speed estimation using modified nonlinear anisotropic diffusion to improve spatial resolution in ultrasound imaging." IEEE Trans. Ultrason. Ferroelectr. Freq. control 59.5 (2012): 905-914.
    [19] Jesper Udesen, Fredrik Gran, Kristoffer Lindskov Hansen, Jørgen Arendt Jensen, Carsten Thomsen, and Michael Bachmann Nielsen. "High frame-rate blood vector velocity imaging using plane waves: Simulations and preliminary experiments." IEEE Trans. Ultrason. Ferroelectr. Freq. control 55.8 (2008): 1729-1743.
    [20] Jeremy Bercoff, Gabriel Montaldo, Thanasis Loupas, David Savery, Fabien Mézière, Mathias Fink, and Mickael Tanter. "Ultrafast compound Doppler imaging: Providing full blood flow characterization." IEEE Trans. Ultrason. Ferroelectr. Freq. control 58.1 (2011): 134-147.
    [21] Ingvild Kinn Ekroll, Abigail Swillens, Patrick Segers, Torbjørn Dahl, Hans Torp, and Lasse Lovstakken. "Simultaneous quantification of flow and tissue velocities based on multi-angle plane wave imaging." IEEE Trans. Ultrason. Ferroelectr. Freq. control 60.4 (2013): 727-738.
    [22] Stefano Ricci, Luca Bassi, and Piero Tortoli. "Real-time vector velocity assessment through multigate Doppler and plane waves." IEEE Trans. Ultrason. Ferroelectr. Freq. control 61.2 (2014): 314-324.
    [23] Vincent Perrot, Lorena Petrusca, Adeline Bernard, Didier Vray and Herv´e Liebgott. "Simultaneous pulse wave and flow estimation at high-framerate using plane wave and transverse oscillation on carotid phantom." IEEE IUS. (2017).
    [24] K. W Hollman, K. W. Rigby, and M. O'donnell. "Coherence factor of speckle from a multi-row probe." IEEE IUS. (1999) 1257-1260.
    [25] H. Liebgott, A. Rodriguez-Molares, F. Cervenansky, J.A. Jensen, and O. Bernard. "Plane-wave imaging challenge in medical ultrasound." IEEE IUS. (2016).
    [26] J. E. Browne, K. V. Ramnarine, A. J. Watson, and P. R. Hoskin. "Assessment of the acoustic properties of common tissue-mimicking test phantoms." Ultrasound Med. Biol. 29.7 (2003): 1053-1060.
    [27] You Leo Li, Dongwoon Hyun, Lotfi Abou-Elkacem, Juergen Karl Willmann, and Jeremy J. Dahl. "Visualization of small-diameter vessels by reduction of incoherent reverberation with coherent flow power doppler." IEEE Trans. Ultrason. Ferroelectr. Freq. control 63.1 (2016): 1878-1889.
    [28] Marko Jakovljevic, Scott Hsieh, Rehman Ali, Gustavo Chau Loo Kung, Dongwoon Hyun, and Jeremy J. Dahl. "Local speed of sound estimation in tissue using pulse-echo ultrasound: Model-based approach." J. Acoust. Soc. Am. 144.1 (2018): 254-266.

    QR CODE