簡易檢索 / 詳目顯示

研究生: 姜斈翰
Xue-Han Jiang
論文名稱: 自相關矩陣估計方法於超音波可適性之平面波成像效能評估與探討
The performance evaluation of covariance matrix estimation using plane wave imaging
指導教授: 沈哲州
Che-Chou Shen
口試委員: 廖愛禾
Ai-Ho Liao
劉建宏
Jian-Hong Liu
李夢麟
Meng-Lin Li
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 107
中文關鍵詞: 共變異矩陣前進平均法前後平均法
外文關鍵詞: Covariance matrix, Forward averaging, Forward Backward averaging
相關次數: 點閱:225下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超音波亮度模式(Bmode)成像中,波束成像通常藉由時間延遲的觀念估算物體的位置,由於時間延遲的方法預測不穩定,造成影像上假影的產生,所以事先估計的時間延遲影像品質並不佳,所以依據接收訊號判斷的波束成像油然而生,此種波束成像稱為可適應波束成像。
    其中一種可適應波束成像稱為最小方差法,而在此種方法中至關重要為共變異矩陣的估測,精準的共變異矩陣可以提升影像品質,反之,不精準的共變異矩陣所產生的影像品質趨近於傳統的波束成像,所以許多的研究者提出不同共變異矩陣的估算方式。
    在本篇比較前進平均法與前後平均法使用於共變異矩陣中,在共變異矩陣的估算中,前進平均法由於對角線的估測傾斜,此現象造成影像品質在左右側散射子的亮度低於中間散射子的亮度,與預期的結果相反,進而使用前後平均法改善此問題,在本篇模擬與實驗中皆有改善,其原因為前後平均法相較於前進平均法,其共變異矩陣具有對稱性質。


    In adaptive ultrasound beamforming, one of well-known beamforming is minimum variance beamformer. The beamformer in simulation show high performance than traditional beamformer. The crucial purpose for this beamformer is to estimate covariance matrix. The more accurate covariance is, the more high quality image can get. However, in actual environment, MV cannot reaches the simulation performance. Lower SNR transmission result in even worst performance. For this issue, many researcher try to solve this problem and provide new idea to estimate covariance matrix.
    In this paper, we use MV beamfomer using single plane wave transmission and discover that wire close to image boundary disappear in the image. The reason why it is disappearance is the estimation error in covariance matrix. We will explain estimation error for covariance matrix and use forward backward averaging to improve this proplem.

    目錄 致謝 5 摘要 3 圖目錄 8 第一章 緒論 14 1.1傳統波束成像 14 1.2平面波成像 16 1.3可適應性波束成像 18 1.4研究動機 22 第二章 理論 24 2.1窄頻訊號的數學模型 24 2.2最小方差波束成像 27 2.3 振幅相位估計波束成像 31 2.4 前後平均共變異矩陣估計法 33 2.5 特徵空間波束成像 35 第三章 研究結果 38 3.1研究架構 38 3.2理想訊號模型 40 3.3通道訊號的方向性 46 3.4斑點仿體模擬結果:無回音區信號 67 3.5斑點仿體模擬結果:強回音區信號 82 3.6實驗結果 89 第四章 結果與討論 92 Appendix 98 MV解 98 APES 解 99 參考文獻 101

    [1] Capon, Jack. "High-resolution frequency-wavenumber spectrum analysis." Proceedings of the IEEE 57.8 (1969): 1408-1418.
    [2] Mann, Jake A., and W. F. Walker. "A constrained adaptive beamformer for medical ultrasound: Initial results." Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE. Vol. 2. IEEE, 2002.
    [3] Sasso, Magali, and Claude Cohen-Bacrie. "Medical ultrasound imaging using the fully adaptive beamformer." Acoustics, Speech, and Signal Processing, 2005. Proceedings.(ICASSP'05). IEEE International Conference on. Vol. 2. IEEE, 2005.
    [4] Vignon, Francois, and Michael R. Burcher. "Capon beamforming in medical ultrasound imaging with focused beams." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 55.3 (2008).
    [5] Shan, Tie-Jun, and Thomas Kailath. "Adaptive beamforming for coherent signals and interference." IEEE Transactions on Acoustics, Speech, and Signal Processing 33.3 (1985): 527-536.
    [6] Li, Jian, Petre Stoica, and Zhisong Wang. "On robust Capon beamforming and diagonal loading." IEEE Transactions on Signal Processing 51.7 (2003): 1702-1715.
    [7] Synnevag, J., Andreas Austeng, and Sverre Holm. "Adaptive beamforming applied to medical ultrasound imaging." IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 54.8 (2007): 1606.
    [8] Synnevag, Johan-Fredrik, Andreas Austeng, and Sverre Holm. "Benefits of minimum-variance beamforming in medical ultrasound imaging." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 56.9 (2009).
    [9] Synnevåg, J-F., C-IC Nilsen, and Sverre Holm. "P2b-13 speckle statistics in adaptive beamforming." Ultrasonics Symposium, 2007. IEEE. IEEE, 2007.
    [10] Synnevag, Johan-Fredrik, Andreas Austeng, and Sverre Holm. "A low-complexity data-dependent beamformer." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 58.2 (2011): 281-289.
    [11] Asl, Babak Mohammadzadeh, and Ali Mahloojifar. "A low-complexity adaptive beamformer for ultrasound imaging using structured covariance matrix." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 59.4 (2012)
    [12] Nilsen, C-IC, and Ines Hafizovic. "Beamspace adaptive beamforming for ultrasound imaging." IEEE Transactions on Ultrasonics, ferroelectrics, and frequency control 56.10 (2009).
    [13] Kim, Kyuhong, et al. "A fast minimum variance beamforming method using principal component analysis." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 61.6 (2014): 930-945.
    [14] Stoica, Petre, Hongbin Li, and Jian Li. "A new derivation of the APES filter." IEEE Signal Processing Letters 6.8 (1999): 205-206.
    [15] Blomberg, Ann EA, et al. "APES beamforming applied to medical ultrasound imaging." Ultrasonics Symposium (IUS), 2009 IEEE International. IEEE, 2009.
    [16] Hasegawa, Hideyuki, and Hiroshi Kanai. "Effect of element directivity on adaptive beamforming applied to high-frame-rate ultrasound." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 62.3 (2015): 511-523.
    [17] Hasegawa, Hideyuki. "Improvement of penetration of modified amplitude and phase estimation beamformer." Journal of Medical Ultrasonics 44.1 (2017): 3-11.
    [18] Austeng, Andreas, et al. "Sensitivity of minimum variance beamforming to tissue aberrations." Ultrasonics Symposium, 2008. IUS 2008. IEEE. IEEE, 2008.
    [19] Ziksari, Mahsa Sotoodeh, and Babak Mohammadzadeh Asl. "Combined phase screen aberration correction and minimum variance beamforming in medical ultrasound." Ultrasonics 75 (2017): 71-79.
    [20] Dei, Kazuyuki, Jaime Tierney, and Brett Byram. "Plane wave image quality improvement using ADMIRE algorithm." Ultrasonics Symposium (IUS), 2016 IEEE International. IEEE, 2016.
    [21] Hollman, K. W., K. W. Rigby, and M. O'donnell. "Coherence factor of speckle from a multi-row probe." Ultrasonics Symposium, 1999. Proceedings. 1999 IEEE. Vol. 2. IEEE, 1999.
    [22] Park, Suhyun, et al. "Adaptive beamforming for photoacoustic imaging using linear array transducer." Ultrasonics Symposium, 2008. IUS 2008. IEEE. IEEE, 2008.
    [23] Wang, S-L., and P-C. Li. "MVDR-based coherence weighting for high-frame-rate adaptive imaging." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 56.10 (2009).
    [24] Asl, Babak Mohammadzadeh, and Ali Mahloojifar. "Minimum variance beamforming combined with adaptive coherence weighting applied to medical ultrasound imaging." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 56.9 (2009).
    [25] Nilsen, Carl-Inge Colombo, and Sverre Holm. "Wiener beamforming and the coherence factor in ultrasound imaging." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 57.6 (2010).
    [26] Wang, Yu-Hsin, and Pai-Chi Li. "SNR-dependent coherence-based adaptive imaging for high-frame-rate ultrasonic and photoacoustic imaging." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 61.8 (2014): 1419-1432.
    [27] Xu, Mengling, et al. "Spatio-temporally smoothed coherence factor for ultrasound imaging [Correspondence]." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 61.1 (2014): 182-190.
    [28] Deylami, Ali Mohades, and Babak Mohammadzadeh Asl. "Amplitude and phase estimator combined with the Wiener postfilter for medical ultrasound imaging." Journal of Medical Ultrasonics 43.1 (2016): 11-18.
    [29] Asl, Babak Mohammadzadeh, and Ali Mahloojifar. "Eigenspace-based minimum variance beamforming applied to medical ultrasound imaging." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 57.11 (2010).
    [30] Mehdizadeh, Saeed, et al. "Eigenspace based minimum variance beamforming applied to ultrasound imaging of acoustically hard tissues." IEEE transactions on medical imaging 31.10 (2012): 1912-1921.
    [31] Zhang, Shun, Yuanyuan Wang, and Jinhua Yu. "An adaptive eigenspace-based beamformer using coherence factor in ultrasound imaging." Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), International Congress on. IEEE, 2016.
    [32] Zeng, Xing, Cheng Chen, and Yuanyuan Wang. "Eigenspace-based minimum variance beamformer combined with Wiener postfilter for medical ultrasound imaging." Ultrasonics 52.8 (2012): 996-1004.
    [33] Zhao, Jinxin, et al. "Subarray coherence based postfilter for eigenspace based minimum variance beamformer in ultrasound plane-wave imaging." Ultrasonics 65 (2016): 23-33.
    [34] Deylami, Ali Mohades, Joergen Arendt Jensen, and Babak Mohammadzadeh Asl. "An improved minimum variance beamforming applied to plane-wave imaging in medical ultrasound." Ultrasonics Symposium (IUS), 2016 IEEE International. IEEE, 2016.
    [35] Asl, BABAK MOHAMMADZADEH, and Ali Mahloojifar."Contrast enhancement and robustness improvement of adaptive ultrasound imaging using forward-backward minimum variance beamforming." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 58.4 (2011).
    [36] Chang, Lena, and C-C. Yeh. "Performance of DMI and eigenspace-based beamformers." IEEE Transactions on Antennas and Propagation 40.11 (1992): 1336-1347.
    [37] Jensen, Jørgen Arendt. "Field: A program for simulating ultrasound systems." 10TH NORDICBALTIC CONFERENCE ON BIOMEDICAL IMAGING, VOL. 4, SUPPLEMENT 1, PART 1: 351--353. 1996.
    [38] Holfort, Iben Kraglund, Fredrik Gran, and Jørgen Arendt Jensen. "High resolution ultrasound imaging using adaptive beamforming with reduced number of active elements." Physics Procedia 3.1 (2010): 659-665.
    [39] Mohammadzadeh Asl, Babak. "Combining the APES and Minimum-variance Beamformers for Adaptive Ultrasound Imaging." Ultrasonic imaging 38.4 (2016): 239-253.
    [40] Deylami, Ali Mohades, and Babak Mohammadzadeh Asl. "A Fast and Robust Beamspace Adaptive Beamformer for Medical Ultrasound Imaging." IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control (2017).
    [41] Li, Pai-Chi, and Meng-Lin Li. "Adaptive imaging using the generalized coherence factor." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 50.2 (2003): 128-141.
    [42] Camacho, Jorge, Montserrat Parrilla, and Carlos Fritsch. "Phase coherence imaging." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 56.5 (2009)

    QR CODE