簡易檢索 / 詳目顯示

研究生: 黃紹奕
Shao-I Huang
論文名稱: 平行化三維列印:利用骨架感知網格切割設計組裝接合點
Parallel 3D printing : Skeleton Awared Mesh Segmentation to Design Assemble Junction
指導教授: 姚智原
Chih-Yuan Yao
口試委員: 郭重顯
Chung-Hsien Kuo
戴文凱
Wen-Kai Tai
朱宏國
Hung-Kuo Chu
賴祐吉
Yu-Chi Lai
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 71
中文關鍵詞: 三維列印平行化關節骨架模型拆解模型組裝
外文關鍵詞: 3D printing, parallel printing, joint, skeleton, model dismantling, model assembly
相關次數: 點閱:149下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於三維列印技術及機械的普及化,許多傳統模型的建造方式被以三維列印作取代,而三維列印在商業用途上,經常因材料使用過多導致花費成本高及因物體過大無法列印的問題,這些問題在使用傳統模型的建造方式的族群中,往往是考慮是否使用三維列印的因素。本論文針對低成本市場,提出以骨架為基底,組裝切割後的三維模型,利用三維模型生成以骨頭(bone)與關節(joint)所構成的骨架模型結構(skeleton construction),基於三維模型之曲率與骨架點感知三維模型資訊作自動化切割,並修正骨架模型作三維模型支撐,拼裝三維模型切割之外殼,解決物體過大、減少材料消耗及達成平行化列印的概念來減少時間成本。除此之外,基於本論文提出之骨架模型的特性,提出利用三維模型中自動化生成可動式關節,以提升三維模型呈現方式及模型的可動性及保持模型的平衡。而模型本身外,本論文亦分析熔融層積成型技術(Fused Deposition Modeling)中三維列印時所產生的外部支撐材的問題。基於本論文提出之方法,於電腦模擬及實際三維列印之成果可證明該方法的有效性。


    As a result of the 3D printing technology and the popularity of machinery, many crafts using three-dimensional printing to replace the traditional way of presenting. However, three-dimensional printing and commercial use often have high cost, too large and long print time. These factors are often considered whether the use of three-dimensional printing in the use of traditional three-dimensional presentation of the group. Therefore, this thesis proposed to disassemble the three-dimensional model, reduce costs and solve the huge problem of objects. We use the 3D model to generate the skeleton model that associated with the skeleton and the joint. We also use the curvature of 3D model and the information of skeleton model for automatic dismantling and fix the skeleton model to sustain 3D model. In addition, this thesis uses the advantages of the skeleton model to propose the automatic generation of movable joints to increase the presentation of the three-dimensional model and the mobility of the model. In addition to the 3D model , we also examines the problem of external support material produced by the three-dimensional printing method of Fused Deposition Modeling technology. Base on our method, the results using in 3D printing can obtain high performance.

    中文摘要------------i 英文摘要------------ii 目錄--------------iii 圖目錄-------------iv 符號說明------------ix 1.緒論------------1   研究背景與動機-------1   論文貢獻----------2   論文架構----------2 2.相關研究----------4   模型呈現----------4   三維列印模型呈現------5   模型切割與組裝-------7   外部支撐材---------8 3.系統架構----------9 4.三維模型分析--------11   骨架結構生成--------12   模型收縮----------15   三維模型及骨架修正-----23   可動式關節---------31 5.切割模型----------37   三維模型切割演算法-----37   修正切割模型--------38 6.模型支撐----------42   輔助型骨架---------42   外部支撐材---------45 7.實驗結果與討論-------49 8.結論與未來工作-------55 參考文獻------------56

    [1] Peng Song, Bailin Deng, Ziqi Wang, Zhichao Dong, Wei Li, Chi-Wing Fu, and Ligang Liu.CofiFab: Coarse-to-fine fabrication of large 3d objects. ACM Transactions on Graphics (SIGGRAPH 2016), 35(4):1–11, 2016.
    [2] Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo Chu, Daniel Cohen-Or, andTong-Yee Lee.Skeleton extraction by mesh contraction. ACM Trans. Graph., 27(3):44:1–44:10, 2008.
    [3] James McCrae, Karan Singh, and Niloy J. Mitra. Slices: A shape-proxy based on planar sections. ACM Trans. Graph., 30(6):168:1–168:12, 2011.
    [4] Kristian Hildebrand, Bernd Bickel, and Marc Alexa. Crdbrd: Shape fabrication by sliding planar slices. Comput. Graph. Forum, 31(2):583–592, 2012.
    [5] Yuliy Schwartzburg and Mark Pauly. Fabrication-aware design with intersecting planar pieces. Comput. Graph. Forum, 32(2):317–326, 2013.
    [6] Desai Chen, Pitchaya Sitthi-amorn, Justin T. Lan, and Wojciech Matusik. Computing and fabricating multiplanar models. Comput. Graph. Forum, 32(2):305–315, 2013.
    [7] Paolo Cignoni, Nico Pietroni, Luigi Malomo, and Roberto Scopigno. Field-aligned mesh joinery. ACM Trans. Graph., 33(1):11:1–11:12, 2014.
    [8] Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radom´ır Mˇech. Stress relief: Improving structural strength of 3d printable objects. ACM Trans. Graph., 31(4):48:1–48:11, 2012.
    [9] Weiming Wang, Tuanfeng Y. Wang, Zhouwang Yang, Ligang Liu, Xin Tong, Weihua Tong, Jiansong Deng, Falai Chen, and Xiuping Liu. Cost-effective print-ing of 3d objects with skin-frame structures. ACM Transactions on Graphics (Proc. SIGGRAPH Aisa), 32(5):1–10, 2013.
    [10]Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen,Yann Savoye, Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. Build-to-last:Strength to weight 3d printed objects. ACM Trans. Graph., 33(4):97:1–97:10,2014.
    [11] Stefanie Mueller, Tobias Mohr, Kerstin Guenther, Johannes Frohnhofen, and Patrick Baudisch. fabrickation: Fast 3d printing of functional objects by inte-grating construction kit building blocks. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14, pages 3827–3834, 2014.
    [12] Dustin Beyer, Serafima Gurevich, Stefanie Mueller, Hsiang-Ting Chen, and Patrick Baudisch. Platener: Low-fidelity fabrication of 3d objects by substi- tuting 3d print with laser-cut plates. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, pages 1799–1806, 2015.
    [13] Wei Gao, Yunbo Zhang, Diogo C. Nazzetta, Karthik Ramani, and Raymond J. Cipra. Revomaker: Enabling multi-directional and functionally-embedded 3d printing using a rotational cuboidal platform. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, UIST ’15, pages 437–446, 2015.
    [14] Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. Chopper: Partitioning models into 3D-printable parts. ACM Transactions on Graphics (Proc. SIGGRAPH Asia), 31(6):129:1–129:9, 2012.
    [15] Weiming Wang, C´edric Zanni, and Leif Kobbelt. Improved surface quality in 3d printing by optimizing the printing direction. Computer Graphics Forum, 35(2):59–70, 2016.
    [16] Jacques Cal`ı, Dan A. Calian, Cristina Amati, Rebecca Kleinberger, Anthony Steed, Jan Kautz, and Tim Weyrich. 3d-printing of non-assembly, articulated models. ACM Trans. Graph., 31(6):130:1–130:8, 2012.
    [17] Ryan Schmidt and Nobuyuki Umetani. Branching support structures for 3d printing. In ACM SIGGRAPH 2014 Studio, SIGGRAPH ’14, pages 9:1–9:1, 2014.
    [18] Juraj Vanek, Jorge A. Garcia Galicia, and Bedrich Benes. Clever support: Efficient support structure generation for digital fabrication. Comput. Graph. Forum, 33(5):117–125, 2014.
    [19] Oliver Glauser, Wan-Chun Ma, Daniele Panozzo, Alec Jacobson, Otmar Hilliges, and Olga Sorkine-Hornung. Rig animation with a tangible and modular input device. ACM Trans. Graph., 35(4):144:1–144:11, 2016.
    [20] Szymon Rusinkiewicz. Estimating curvatures and their derivatives on triangle meshes. In Symposium on 3D Data Processing, Visualization, and Transmission , 3DPVT ’04, pages 486–493, 2004.

    無法下載圖示 全文公開日期 2022/08/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE