簡易檢索 / 詳目顯示

研究生: 陳俊豪
Chun-hao Chen
論文名稱: 光固化快速成形技術製作組織工程支架之研究
Research on Fabrication of Tissue Engineering Scaffolds by Photo-Curing Rapid Prototype Technology
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 謝明發
none
楊台鴻
none
趙振綱
Ching-Kong Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 88
中文關鍵詞:  支架數位微鏡晶片快速原型
外文關鍵詞:  Scaffolds, Digital Micro-mirror Device, Rapid Prototyping
相關次數: 點閱:367下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在傳統的支架製造方法上,普遍有著孔洞大小、分布不易控制、特定外形難以製作,以及冗長的製作時間等問題,皆造成支架製作使用上的不便利;然而以快速原型(Rapid Prototyping)技術應用在製作支架上,以層加工堆疊成型,可有效地解決傳統製作支架的問題。
本研究將延續實驗室先前所研發的生醫動態光罩快速成型系統(Dynamic Mask Rapid Prototyping System),嘗試利用DLP(Digital Light Processing)投影機內部120W超高壓水銀燈泡,取代外接式光源-光纖點光源機,當作光聚合生醫材料固化的光源,在經濟上的考量也更具效益。以此新光源系統製作支架最佳的孔洞尺寸約為500μm,雖比前光源系統製作孔洞尺寸來得大,但此新光源系統所製作出之支架,經酒精沖洗後處理,孔洞其3D效果尤佳且具孔洞連通性。
針對所使用的生醫高分子材料,PEG-HEMA/PLGA 200型與PEG-HEMA/PLGA 600型,進行材料降解測試,以作為將來應用的評估。200型與600型生醫材料其含水率在第18天有開始增加的趨勢;pH值方面,200型生醫材料在第24天開始,其酸鹼值降至pH7以下,直至第42天才又回升到pH7以上,而600型始終維持在pH7以上;重量損失率方面,記錄60天的測量結果看來,200型的重量損失比600型來得快。
以MG63類骨母細胞(human osteoblast-like cell)、骨髓細胞(bone marrow)進行體外培養,經由倒立式顯微鏡、電子顯微鏡、細胞計數以及生物毒性反應測試等檢測細胞生長於支架上的形態,雖不見細胞在支架上的生長,但由生物毒性反應測試及材料性質檢測可以判斷細胞在培養期間還是有生長的跡象。


Traditional methods to generate tissue engineering scaffold have encountered issues such as limited control of pore-size, restricted geometric shapes, and long fabrication periods. Layered manufacturing techniques, also known as Rapid Prototyping (RP) processes, provide a great opportunity for fabricating scaffolds without above problems.
The research continued the project of Dynamic Mask Rapid Prototyping System developed in our laboratory to cure biodegradable material to generate scaffolds. Instead of using an expensive fiber-type spot UV light source, the internal 120W bulb of the Digital Light Processing (DLP) projector was utilized as a light source. With this approach, no addition light source was required and the cost of the system could be reduced. The best pore size of scaffolds achieved by this new system was about 500μm. Although the pore size was larger than the previous work, the 3D interconnected pore network could be achieved after flushing the fabricated scaffolds by alcohol.
Degradation tests of the fabricated scaffolds were conducted in order to compare the two scaffold materials, PEG-HEMA/PLGA type 200 and type 600, used in this research. The water absorption ratio for both types started to increase after 18 days. The pH value of type 200 dropped below 7 starting from the 24th days and bounced back to above 7 after 42 days, while for type 600 it maintained above 7. The mass lose ratio of the type 200 is faster than the type 600 during 60 days.
MG63 human osteoblast-like cells and bone marrow were cultured on porous scaffolds in vitro for three weeks. The cell growth morphology was observed by optical microscope and SEM, and evaluated by MTT assay kits. Although the cell growth was not able to be observed on the scaffolds after three week, the results of MTT assay kits and nature measuring in 3-day period showed that the cell did growth during culture.

摘要.......................................................I Abstract..................................................II 摘要......................................................IV 目錄.......................................................V 圖目錄..................................................VIII 表目錄...................................................XII 第一章 緒論1 1.1 前言1 1. 2 研究目的和方法2 第二章 文獻探討3 2.1 組織工程(Tissue Engineering)介紹3 2.1.1支架材料之特性6 2.1.2高分子生醫材料7 2.1.3傳統支架製備方法10 2.2 應用快速原型技術製造組織工程之支架15 2.2.1快速原型加工原理15 2.2.2快速原型技術應用於組織工程支架之製造16 第三章 生醫動態光罩快速成型系統23 3.1 動態光罩控制軟體25 3.1.1光罩輪廓資料之輸入與處理25 3.1.2動態光罩圖案的產生27 3.2 動態光罩產生器30 3.3 曝光光源機構變更設計35 第四章 支架製作與材料性質檢測38 4.1實驗藥品與設備38 4.2材料系統介紹40 4.2.1光起始劑40 4.2.2光交聯劑44 4.2.3光聚合生醫材料45 4.3 加工系統流程與支架製作47 4.3.1加工參數48 4.3.2多孔性支架製作52 4.3.3與前系統所製作出的支架特徵比較60 4.4材料性質測試61 4.4.1靜態降解61 4.4.2材料含水率測61 4.4.3重量損失量測62 4.4.4酸鹼值量測62 4.5細胞培養與生物毒性檢測62 4.5.1 MG-63骨母細胞之培養62 4.5.2生物毒性檢測(MTT assay)65 第五章 實驗結果與性質檢測分析67 5.1支架性質檢測67 5.1.1材料含水率(Water Absorption Ratio)67 5.1.2降解測試68 5.2細胞培養之結果74 5.2.1倒立式顯微鏡觀察74 5.2.2電子顯微鏡觀察(SEM)75 5.2.3細胞計數77 5.2.4生物相容性測試79 第六章 結論與未來工作82 6.1結論82 6.2未來工作83 參考文獻84

1.李宣書,”淺談組織工程”,物理雙月刊(二十四卷三期),2001年6月。

2.Background on Tissue Engineering, (http://www-2.cs.cmu.edu/People/tissue/ tutorial.html)

3.Dietmar W. Hutmacher et al, “Scaffold-based bone engineering by using genetically modified cells,” Gene 347 (2005) 1-10.

4.張根源,”組織工程技術與應用”,化工科技與商情第33期,2002年6月。

5.楊婷琪,”組織工程的重要元件-生物分子”,工研院經貿中心生醫組,2002年7月。

6.Shoufeng Yang et al., “The design of scaffolds for use in tissue engineering. Part I. Traditional Factors,” Tissue Engineering, Volume 7, Number 6 (2001) 679-689.

7.俞耀庭,生物醫用材料,初版,新文京,2004。

8.D.K. Gilding A.M. Reed, “Biodegradable polymers for use in surgery-Poly (glycolic acid)/Poly(lactide acid)homo-and copolymers.2.In vitro degradation,” Polymer, Volume 22 (1981) 494-498.

9.工業技術研究院,” 生醫材料與組織工程” (http://www.itri.org.tw/chi/rnd/focused_rnd/biotech_medicine/e003.jsp)

10.張根源,”生物吸收性PLGA材料合成與應用技術”,工業技術與資訊第112期,2001年2月。

11.興技生物科技公司, (http://www.bio-invigor.com)

12.蔡秉宏,”以聚殼醣合成光交聯性衍生物之探討”,國立成功大學化學工程研究所,碩士論文,1999。

13.Dumitriu S., ”Medical application of synthetic polymers,” Marcel Dekker, New York (1994) 725.

14.J.M. Taboas et al., “Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds,” Biomaterials 24 (2003) 181-194.

15.Whang, K., Thomas, C. K. et al., “A novel method to fabricate bioabsorbable scaffolds,” Polymer 36 (1995) 837-842.

16.Si-Nae Park et al., “Characterization of porous collagen/hyaluronic acid scaffold modified by 1-eyhyl-3-(3-dimethylaminopropyl) carbodiimide,” Biomaterials 23 (2002) 1205-1212.

17.Markus S. Widmer et al, “Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration,” Biomaterials 19 (1998) 1945-1955.

18.Kwangsok Kim et al, “Control of degradation rate and hydrophilicity in electrospun non-woven poly(D,L-lactide) nanofiber scaffolds for biomedical applications,” Biomaterials 24 (2003) 4977-4985.

19.Guobao Wei and Peter X. Ma, “Structure and properties of nano-hydroxyapatite/ polymer composite scaffolds for bone tissue engineering,” Biomaterials 25 (2004) 4749-4757.

20.Ch. Schugens et al., “Polylactide macroporous biodegradable implants for cell transplantation. Ⅱ. Preparation of polylactide foams by liquid-liquid phase separation,” J. Biome Mater Res. 30 (1996) 449-461.

21.國立台灣科技大學雷射實驗室, (http://140.118.198.70/RP.html).

22.Bertsch A. et al., “Rapid Prototyping of small size objects,” Rapid Prototyping Journal, V6, N4 (2000) 259-266.

23.Iwan Zein et al., ”Fused deposition modeling of novel scaffold architecture for tissue engineering application,” Biomaterials 23 (2002) 1169-1185.

24.Samar Jyoti Kalita et al. “Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling,” Materials Science and Engineering C 23 (2003) 611-62.

25.黃台生譯,Chua C. K. and Leong K. F.著,“快速原型-原理與製造上的應用”,六合出版社,1998年6月。

26.Major RP Techologies, (http://www.uni.edu/~rao/rt/major_tech.htm)

27.Distribuidores Autorizados de Impresoras 3D Zcorporation, (http://tecsol3d.com/ zcorp/)

28.C.X.F. Lam et al. “Scaffold development using 3D printi ng with a starch-based polymer,” Materials Science and Engineering C 20 (2002) 49-56.

29.Zhuo Xiong et al. “Fabrication of porous poly(L-lactic acid) scaffolds for bone tissue engineering via precise extrusion,” Scripta materialia 45 (2001) 773-779.

30.T.H. Ang et al. “Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system,” Materials Science and Engineering C 20 (2002) 35-42.

31.Mariah S. Hahn et al. “Photolithographic patterning of polyethylene glycol hydrogels,” Biomaterials 27 (2006) 2519-5254.

32.陳徹工作室 編著,“Visual Basic 6 程式設計實務入門”,文魁資訊公司,2000年7月。

33.TEXAS INSTRUMENTS, (http://www.ti.com)

34.L.J Hornbeck, “Deformable-Mirror Spatial Light Modulators,” Spatial Light Modulators and Application III SPIE Critical Reviews,Vol. 1150 (1989) 86-102.

35.PLUS Vision Corp.,(http://www.plus-vision.com/en/)

36.Lichun Lun et al.”In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films,” Journal of Biomedical Materials Research, Volume 46 (1999) 236-244.

37.許端容,”具紫外光交聯性的聚胺酯二醇樹酯合成及應用於組織工程之研究”,國立清華大學材料科學與工程研究所,碩士論文,2004。

38.李孟龍,”動態光罩快速原型系統製造組織工程支架之研發”,國立台灣科技大學機械工程研究所,碩士論文,2005。

39.黎坤瓚,”在細胞育成環境中使用快速成型技術製作組織工程支架之可行性研究”,國立台灣科技大學機械工程研究所,碩士論文,2005。

40.Yoshikawa et al. “Immediate bone forming capability of prefabricated osteogenic hydroxyapatite,” Journal of Biomedical Materials Research, Vol. 32 (1996) 481-492.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE