簡易檢索 / 詳目顯示

研究生: 伍宇涵
Yu-Han Wu
論文名稱: 藉由三維列印幾丁聚醣水膠控制藥物釋放
Controlled Drug Delivery through 3D Printing of Chitosan Hydrogels
指導教授: 何明樺
Ming-Hua Ho
口試委員: 李振綱
Cheng-Kang Lee
糜福龍
Fwu-Long Mi
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 136
中文關鍵詞: 三維列印幾丁聚醣交聯劑水膠藥物釋放支架
外文關鍵詞: 3D printing, chitosan, crosslinkers, hydrogel, drug release, scaffolds
相關次數: 點閱:208下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於幾丁聚醣 (Chitosan, CS)水膠對細胞外基質 (Extracellular matrix, ECM)表現出良好的仿生性 (Biomimetics)、細胞親和力 (Cell affinity)、抗菌特性 (Antibacterial properties)和可控的生物吸收能力 (Bioresorbability),現今已於生物醫學應用領域備受關注。當水膠材料與3D列印技術結合時,可大規模製造精確且高度客製化的多孔結構,使CS水膠於生物醫學領域的應用更為廣泛。然而,傳統CS水膠離子交聯使列印效率不足以應用於商業的3D列印程序,機械強度差、穩定性差和重現性差等缺點限制CS水膠於3D列印領域的發展。因此,本研究應用交聯劑和加速反應以改善3D列印CS水膠。
    在第一部分中,本研究將使用交聯劑處理CS水膠以提高CS的黏度與分子間作用力,藉此提升於3D列印中的列印分辨率 (Resolution)與成膠 (Gelation)速度。首先將交聯劑與加速劑混和均勻後,接著將水膠裝於5 mL針筒以進行3D列印程序,並加熱收集槽以加速固化反應。結果顯示提高溫度與材料濃度後,成膠時間縮短99.23%,列印結構的形變量減少63.23%,適印性提升至1.0,顯示此材料為理想的可列印材料。骨母細胞 (7F2)的細胞活性測試結果證實CS與CS/交聯劑水膠皆具有良好的生物相容性 (Biocompatibility)。
    在第二部分中,將目標藥物Doxycycline (Dox)直接混入CS水膠支架進行3D列印,設計多種多孔支架結構並對藥物釋放支架變因做探討,以控制藥物釋放速率。結果顯示透過增加阻擋層 (Barrier Layers)厚度、緻密度、曲折度以及無載藥水膠緻密度,可有效延長藥物釋放時間。抗菌測試的結果同樣證實增加阻擋層孔隙率能有效延緩釋放時間並達到抑菌效果。此外,長期藥物釋放的結果顯示牛血清蛋白 (BSA)於第5天時出現最高釋放量79.19%,之後至14天時釋放少量的BSA,證實CS水膠多孔支架能夠作為長效型給藥的載體。


    The chitosan (CS) hydrogel has gained significant attention due to its ability to exhibit biomimetic properties to extracellular matrix (ECM), excellent cell affinity, antibacterial properties, and controllable bioresorbability. When combined with 3D printing (3DP) techniques, hydrogel materials enable the fabrication of accurate and highly customized porous structures on a large scale, opening up numerous possibilities for biomedical applications. However, the conventional ionic-crosslinking solidification of CS hydrogel has proven to be inefficient for commercial 3DP processes. The limitations of poor mechanical strength, inadequate stability, and inferior reproducibility hindered the advancement of CS hydrogel in 3DP. To address these challenges, this study focuses on the application of the crosslinker and an accelerated reaction to enhance the 3DP of CS hydrogel.
    In the first part of the study, the crosslinker was added to the CS solution. The addition of the crosslinker had a significant impact, increasing the viscosity and intermolecular forces of CS. This, in turn, enhanced the printing resolution and gelation speed in the 3DP process. Two solutions, one containing the crosslinker solution with accelerated agents and the other containing pre-crosslinked CS solution, were blended and then loaded into a 5 mL syringe for the 3DP process. To expedite the solidification reaction, the collector was heated. The results demonstrated a 99.23% reduction in gelation time, a 63.23% decrease in the deformation of printed structures, and an improved printability rating of 1.0 under optimized temperature and concentration conditions. These findings indicate that the optimized formulation serves as an ideal printable ink. Furthermore, the cell culture experiments using osteoblast cells (7F2) confirmed the excellent biocompatibility of both CS hydrogel and GP crosslinked CS hydrogel.
    In the second part of the study, the CS hydrogel scaffolds were loaded with Doxycycline (Dox) for the 3DP process. Various porous structures were designed, and the factors influencing drug release rates were investigated to achieve controlled release. The results of the release experiments indicated that the duration of drug release could be effectively prolonged by increasing the thickness, density, and tortuosity of the barrier layers, as well as the density of the drug-free hydrogel. Antibacterial tests also confirmed that increasing the density of the barrier layers could delay the release duration and achieve an antibacterial effect. Moreover, the long-term release results revealed that 79.19% of BSA (bovine serum albumin) was released within 5 days, gradually releasing small amount of BSA until 14 days. These findings demonstrate the capability of CS hydrogel porous scaffolds to function as long-term drug delivery carriers.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 IX 表目錄 XVI 方程式目錄 XVII 專有名詞及縮寫 XVIII 第一章 緒論 1 第二章 文獻回顧 3 2.1 幾丁聚醣水膠 3 2.1.1 幾丁聚醣水膠之基本性質 3 2.1.2 化學交聯幾丁聚醣水膠 4 2.1.3 梔子素交聯幾丁聚醣水膠 5 2.1.4 幾丁聚醣水膠於生醫工程領域之應用 6 2.1.5 幾丁聚醣水膠及藥物遞送系統 8 2.2 幾丁聚醣與梔子素交聯反應 10 2.2.1 梔子素變色反應機制 11 2.2.2 梔子素與氧氣的反應機制 12 2.3 積層製造技術簡介 14 2.3.1 擠製成型3D列印技術 14 2.3.2 3D列印幾丁聚醣水膠於生醫工程領域之應用 16 2.4 多孔結構支架系統 18 2.4.1 多孔結構對細胞貼附和機械性質的影響 18 2.4.2 3D列印多孔支架的藥物釋放 19 第三章 實驗材料與方法 22 3.1 實驗藥品 22 3.2 實驗儀器 24 3.3 水膠支架製備 26 3.3.1 水膠配方 26 3.3.2 水膠支架列印 26 3.4 水膠性質檢測 28 3.4.1 黏度測試 28 3.4.2 流變性測試 28 3.4.3 傅立葉轉換紅外線光譜分析 28 3.4.4 膨潤性 (Swelling)測試 28 3.4.5 重量損失 (Weight Loss)測試 29 3.5 體外細胞測試 30 3.5.1 水膠試片製作 30 3.5.2 生物相容性檢測方式與操作 30 3.5.3 細胞來源 30 3.5.4 細胞培養 31 3.5.5 細胞冷凍保存 32 3.5.6 細胞解凍及培養 32 3.5.7 細胞計數 32 3.5.8 粒線體活性測試 33 3.6 3D列印結構設計與性質分析 36 3.6.1 列印線徑測試 36 3.6.2 列印適印性測試 36 3.7 體外藥物釋放 37 3.7.1 藥物釋放結構設計 37 3.7.2 改變多孔結構之藥物釋放測試 37 3.7.3 長期藥物釋放測試 43 3.8 抗菌檢測 46 3.8.1 水膠多孔支架列印 46 3.8.2 菌落形成單位法 (Colony Forming Unit, CFU) 46 3.8.3 培養基配置 47 第四章 結果與討論 48 4.1 水膠性質分析 48 4.1.1 溫度對水膠成膠時間之影響 48 4.1.2 CaO2濃度對水膠成膠時間之影響 53 4.1.3 Gp濃度對水膠成膠時間之影響 57 4.1.4 CS濃度對水膠成膠時間之影響 63 4.1.5 CS與Gp交聯之官能基分析 66 4.1.6 膨潤分析 67 4.1.7 穩定性分析 70 4.1.8 生物相容性分析 73 4.2 3D列印水膠性質分析 76 4.2.1 線徑分析 76 4.2.2 水膠支架之列印精確度 79 4.3 水膠多孔支架之藥物釋放 85 4.3.1 藥物與CS水膠之紫外線光譜 85 4.3.2 藥物衰退測試 86 4.3.3 阻擋層厚度對藥物釋放速率之影響 86 4.3.4 阻擋層緻密度對藥物釋放速率之影響 89 4.3.5 無載藥水膠緻密度對藥物釋放速率之影響 91 4.3.6 阻擋層曲折度對藥物釋放速率之影響 94 4.3.7 水膠多孔支架對長期藥物釋放之影響 97 4.4 水膠多孔支架之抗菌表現 99 第五章 結論 102 參考文獻 103 Appendix 113

    1. Murugan, S.S., S. Anil, P. Sivakumar, M.S. Shim, and J. Venkatesan, 3D-Printed Chitosan Composites for Biomedical Applications. POLYMER, 2021. 288: p. 87-116.
    2. Ng, W.L., C.K. Chua, and Y.F. Shen, Print Me An Organ! Why We Are Not There Yet. Progress in Polymer Science, 2019. 97: p. 101145-101189.
    3. Varma, M.V., B. Kandasubramanian, and S.M. Ibrahim, 3D printed scaffolds for biomedical applications. Materials Chemistry and Physics, 2020. 255: p. 123642-123659.
    4. Hu, X., Y. Man, W. Li, L. Li, J. Xu, R. Parungao, Y. Wang, S. Zheng, Y. Nie, T. Liu, and K. Song, 3D Bio-Printing of CS/Gel/HA/Gr Hybrid Osteochondral Scaffolds. Polymers (Basel), 2019. 11: p. 1601-1616.
    5. Jiankang, H., L. Dichen, L. Yaxiong, Y. Bo, L. Bingheng, and L. Qin, Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures. Polymer, 2007. 48: p. 4578-4588.
    6. Uttarwar, M. and P. Aswath, Fabrication of porous, drug-releasing, biodegradable, polymer scaffolds for sustained drug release. J Biomed Mater Res B Appl Biomater, 2008. 87: p. 121-131.
    7. Sydney Gladman, A., M. Garcia Leiner, and A. F. Sauer Budge, Emerging polymeric materials in additive manufacturing for use in biomedical applications. AIMS Bioengineering, 2019. 6: p. 1-20.
    8. Rajabi, M., M. McConnell, J. Cabral, and M.A. Ali, Chitosan hydrogels in 3D printing for biomedical applications. Carbohydrate Polymers, 2021. 260: p. 117768-117787.
    9. Michailidou, G., Z. Terzopoulou, A. Kehagia, A. Michopoulou, and D.N. Bikiaris, Preliminary Evaluation of 3D Printed Chitosan/Pectin Constructs for Biomedical Applications. Marine Drugs, 2021. 19: p. 36-53.
    10. Croisier, F. and C. Jérôme, Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 2013. 49: p. 780-792.
    11. Dash, M., F. Chiellini, R.M. Ottenbrite, and E. Chiellini, Chitosan—A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 2011. 36: p. 981-1014.
    12. Carmona, P., A.M. Tasici, S.A. Sande, K.D. Knudsen, and B. Nyström, Glyceraldehyde as an Efficient Chemical Crosslinker Agent for the Formation of Chitosan Hydrogels. Gels, 2021. 7: p. 186-204.
    13. Mi, F.L., S.S. Shyu, and C.K. Peng, Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. Journal of Polymer Science Part A: Polymer Chemistry, 2005. 43: p. 1985-2000.
    14. Moura, M.J., M.M. Figueiredo, and M.H. Gil, Rheological Study of Genipin Cross-Linked Chitosan Hydrogels. Biomacromolecules, 2007. 8: p. 3823-3829.
    15. Mi, F.L., C.Y. Kuan, S.S. Shyu, S.T. Lee, and S.F. Chang, The study of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release. Carbohydrate Polymers, 2000. 41: p. 389-396.
    16. Berger, J., M. Reist, J.M. Mayer, O. Felt, N.A. Peppas, and R. Gurny, Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2004. 57: p. 19-34.
    17. Muzzarelli, R.A.A., Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymers, 2009. 77: p. 1-9.
    18. Nishi, C., N. Nakajima, and Y. Ikada, In vitro evaluation of cytotoxicity of diepoxy compounds used for biomaterial modification. Journal of Biomedical Materials Research, 1995. 29: p. 829-834.
    19. Chen, M.C., F.L. Mi, Z.X. Liao, and H.W. Sung, Chitosan: Its Applications in Drug-Eluting Devices. Advances in Polymer Science, 2011. 243: p. 185-230.
    20. Pizzolitto, C., M. Cok, F. Asaro, F. Scognamiglio, E. Marsich, F. Lopez, I. Donati, and P. Sacco, On the Mechanism of Genipin Binding to Primary Amines in Lactose-Modified Chitosan at Neutral pH. International Journal Molecular Sciences, 2020. 21: p. 6831-6847.
    21. Sung, H.W., R.N. Huang, L.L.H. Huang, C.C. Tsai, and C.T. Chiu, Feasibility study of a natural crosslinking reagent for biological tissue fixation. Journal of Biomedical Materials Research, 1998. 42: p. 560-567.
    22. Mi, F.L., H.W. Sung, and S.S. Shyu, Synthesis and characterization of a novel chitosan-based network prepared using naturally occurring crosslinker. Journal of Polymer Science Part A: Polymer Chemistry, 2000. 38: p. 2804-2814.
    23. Mi, F.L., H.W. Sung, and S.S. Shyu, Drug release from chitosan–alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohydrate Polymers, 2002. 48: p. 61-72.
    24. Mi, F.L., H.F. Liang, Y.C. Wu, Y.S. Lin, T.F. Yang, and H.W. Sung, pH-sensitive behavior of two-component hydrogels composed of N,O-carboxymethyl chitosan and alginate. Journal of Biomaterials Science, Polymer Edition, 2005. 16: p. 1333-1345.
    25. Xu, Z., E. Tang, and H. Zhao, An Environmentally Sensitive Silk Fibroin/Chitosan Hydrogel and Its Drug Release Behaviors. Polymers (Basel), 2019. 11: p. 1980-1993.
    26. Liu, I.H., S.H. Chang, and H.Y. Lin, Chitosan-based hydrogel tissue scaffolds made by 3D plotting promotes osteoblast proliferation and mineralization. Biomedical Materials, 2015. 10: p. 035004-035013.
    27. Gao, L., H. Gan, Z. Meng, R. Gu, Z. Wu, L. Zhang, X. Zhu, W. Sun, J. Li, Y. Zheng, and G. Dou, Effects of genipin cross-linking of chitosan hydrogels on cellular adhesion and viability. Colloids and Surfaces B: Biointerfaces, 2014. 117: p. 398-405.
    28. Mi, F.L., Y.C. Tan, H.C. Liang, R.N. Huang, and H.W. Sung, In vitro evaluation of a chitosan membrane cross-linked with genipin. J. Biomater. Sci. Polymer, 2001. 12: p. 835-850.
    29. Sung, H.W., Y. Chang, I.L. Liang, W.H. Chang, and Y.C. Chen, Fixation of biological tissues with a naturally occurring crosslinking agent: fixation rate and effects of pH, temperature, and initial fixative concentration. J Biomed Mater Res, 2000. 52: p. 77-87.
    30. Butler, M.F., Y.F. Ng, and P.D.A. Pudney, Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. Journal of Polymer Science Part A: Polymer Chemistry, 2003. 41: p. 3941-3953.
    31. Madihally, S.V. and H.W.T. Matthew, Porous chitosan scaffolds for tissue engineering. Biomaterials, 1999. 20: p. 1133-1142.
    32. Kumar, M.N.V.R., R.A.A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A.J. Domb, Chitosan Chemistry and Pharmaceutical Perspectives. Chem. Rev., 2004. 104: p. 6017-6084.
    33. Mi, F.L., H.W. Sung, and S.S. Shyu, Release of indomethacin from a novel chitosan microsphere prepared by a naturally occurring crosslinker: Examination of crosslinking and polycation-anionic drug interaction. Journal of Applied Polymer Science, 2001. 81: p. 1700-1711.
    34. Shi, C., Y. Zhu, X. Ran, M. Wang, Y. Su, and T. Cheng, Therapeutic potential of chitosan and its derivatives in regenerative medicine. Journal of Surgical Research, 2006. 133: p. 185-192.
    35. Degim, Z., N. Celebi, C. Alemdaroglu, M. Deveci, S. Ozturk, and C. Ozogul, Evaluation of chitosan gel containing liposome-loaded epidermal growth factor on burn wound healing. International Wound Journal, 2011. 8: p. 343-354.
    36. Ueno, H., H. Yamada, I. Tanaka, N. Kaba, M. Matsuura, M. Okumura, T. Kadosawa, and T. Fujinaga, Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials, 1999. 20: p. 1407-1414.
    37. Bektas, N., B. Senel, E. Yenilmez, O. Ozatik, and R. Arslan, Evaluation of wound healing effect of chitosan-based gel formulation containing vitexin. Saudi Pharmaceutical Journal, 2020. 28: p. 87-94.
    38. Klokkevold, P.R., L. Vandemark, E.B. Kenney, and G.W. Bernard, Osteogenesis Enhanced by Chitosan (Poly-N-Acetyl Glucosaminoglycan) In Vitro. Journal of Periodontology, 1996. 67: p. 1170-1175.
    39. Ramya, R., J. Venkatesan, S.K. Kim, and P.N. Sudha, Biomedical Applications of Chitosan: An Overview. Journal of Biomaterials and Tissue Engineering, 2012. 2: p. 100-111.
    40. Hoare, T.R. and D.S. Kohane, Hydrogels in drug delivery: Progress and challenges. Polymer, 2008. 49: p. 1993-2007.
    41. Mahanta, A.K. and P. Maiti, Injectable Hydrogel through Hydrophobic Grafting on Chitosan for Controlled Drug Delivery. ACS Applied Bio Materials, 2019. 2: p. 5415-5426.
    42. Kristl, J., J. Smid-Korbar, E. Struc, M. Schara, and H. Rupprecht, Hydrocolloids and gels of chitosan as drug carriers. International Journal of Pharmaceuncs, 1993. 99: p. 13-19.
    43. Prabaharan, M., Chitosan Derivatives as Promising Materials for Controlled Drug Delivery. Journal of Biomaterials Applications, 2008. 23: p. 5-36.
    44. Cheung, R.C., T.B. Ng, J.H. Wong, and W.Y. Chan, Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Marine Drugs, 2015. 13: p. 5156-5186.
    45. Liu, F., W. Li, H. Liu, T. Yuan, Y. Yang, W. Zhou, Y. Hu, and Z. Yang, Preparation of 3D Printed Chitosan/Polyvinyl Alcohol Double Network Hydrogel Scaffolds. Macromolecular Bioscience, 2021. 21: p. 2000398-2000407.
    46. Hafezi, F., N. Scoutaris, D. Douroumis, and J. Boateng, 3D printed chitosan dressing crosslinked with genipin for potential healing of chronic wounds. International Journal of Pharmaceutics, 2019. 560: p. 406-415.
    47. Hobbs, C.A., M. Koyanagi, C. Swartz, J. Davis, R. Maronpot, L. Recio, and S.M. Hayashi, Genotoxicity evaluation of the naturally-derived food colorant, gardenia blue, and its precursor, genipin. Food Chemical Toxicology, 2018. 118: p. 695-708.
    48. Lee, S.W., J.M. Lim, S.H. Bhoo, Y.S. Paik, and T.R. Hahn, Colorimetric determination of amino acids using genipin from Gardenia jasminoides. Analytica Chimica Acta, 2003. 480: p. 267-274.
    49. Paik, Y.S., C.M. Lee, M.H. Cho, and T.R. Hahn, Physical Stability of the Blue Pigments Formed from Geniposide of Gardenia Fruits: Effects of pH, Temperature, and Light. Journal of Agricultural and Food Chemistry, 2001. 49: p. 430-432.
    50. Rodriguez, P.G.B., F.N.B. Felix, D.T.M. Woodley, and E.K.M. Shim, The Role of Oxygen in Wound Healing. Dermatologic surgery, 2008. 34(9): p. 1159-1169.
    51. Talukder, M.S.U., M.S. Pervin, M.I.O. Tanvir, K. Fujimoto, M. Tanaka, G. Itoh, and S. Yumura, Ca(2+)-Calmodulin Dependent Wound Repair in Dictyostelium Cell Membrane. Cells, 2020. 9: p. 1058-1074.
    52. Bahnini, I., M. Rivette, A. Rechia, A. Siadat, and A. Elmesbahi, Additive manufacturing technology: the status, applications, and prospects. The International Journal of Advanced Manufacturing Technology, 2018. 97: p. 147-161.
    53. Shirazi, S.F., S. Gharehkhani, M. Mehrali, H. Yarmand, H.S. Metselaar, N. Adib Kadri, and N.A. Osman, A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Science and Technology of Advanced Materials, 2015. 16: p. 033502-033521.
    54. Zhou, L.Y., J. Fu, and Y. He, A Review of 3D Printing Technologies for Soft Polymer Materials. Advanced Functional Materials, 2020. 30: p. 2000187-2000224.
    55. Lee, J.Y., J. An, and C.K. Chua, Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 2017. 7: p. 120-133.
    56. Zhu, W., X. Ma, M. Gou, D. Mei, K. Zhang, and S. Chen, 3D printing of functional biomaterials for tissue engineering. Current Opinion in Biotechnology, 2016. 40: p. 103-112.
    57. Szymczyk Ziółkowska, P., M.B. Łabowska, J. Detyna, I. Michalak, and P. Gruber, A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybernetics and Biomedical Engineering, 2020. 40: p. 624-638.
    58. Jose, R.R., M.J. Rodriguez, T.A. Dixon, F. Omenetto, and D.L. Kaplan, Evolution of Bioinks and Additive Manufacturing Technologies for 3D Bioprinting. ACS Biomater Sci Eng, 2016. 2: p. 1662-1678.
    59. Zhang, Y., D. Zhou, J. Chen, X. Zhang, X. Li, W. Zhao, and T. Xu, Biomaterials Based on Marine Resources for 3D Bioprinting Applications. Mar Drugs, 2019. 17: p. 555-591.
    60. Pahlevanzadeh, F., R. Emadi, A. Valiani, M. Kharaziha, S.A. Poursamar, H.R. Bakhsheshi-Rad, A.F. Ismail, S. RamaKrishna, and F. Berto, Three-Dimensional Printing Constructs Based on the Chitosan for Tissue Regeneration: State of the Art, Developing Directions and Prospect Trends. Materials (Basel), 2020. 13: p. 2663-2701.
    61. Sahranavard, M., A. Zamanian, F. Ghorbani, and M.H. Shahrezaee, A critical review on three dimensional-printed chitosan hydrogels for development of tissue engineering. Bioprinting, 2020. 17: p. e00063-e00071.
    62. Müller, W.E.G., E. Tolba, H.C. Schröder, M. Neufurth, S. Wang, T. Link, B. Al-Nawasc, and X. Wang, A new printable and durable N,O-carboxymethyl chitosan–Ca2+–polyphosphate complex with morphogenetic activity. Journal of Materials Chemistry B, 2015: p. 2058-2061.
    63. Intini, C., L. Elviri, J. Cabral, S. Mros, C. Bergonzi, A. Bianchera, L. Flammini, P. Govoni, E. Barocelli, R. Bettini, and M. McConnell, 3D-printed chitosan-based scaffolds: An in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohydrate Polymers, 2018. 199: p. 593-602.
    64. Long, J., A.E. Etxeberria, A.V. Nand, C.R. Bunt, S. Ray, and A. Seyfoddin, A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Materials Science and Engineering: C, 2019. 104: p. 109873-109881.
    65. Buj Corral, I., A. Bagheri, and O. Petit-Rojo, 3D Printing of Porous Scaffolds with Controlled Porosity and Pore Size Values. Materials (Basel), 2018. 11: p. 1532-1549.
    66. Chia, H.N. and B.M. Wu, Improved resolution of 3D printed scaffolds by shrinking. J Biomed Mater Res B Appl Biomater, 2015. 103: p. 1415-1423.
    67. Cyster, L.A., D.M. Grant, S.M. Howdle, F.R. Rose, D.J. Irvine, D. Freeman, C.A. Scotchford, and K.M. Shakesheff, The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering. Biomaterials, 2005. 26: p. 697-702.
    68. Fan, C. and D.A. Wang, Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering. Tissue Engineering Part B Rev, 2017. 23: p. 451-461.
    69. Karageorgiou, V. and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005. 26: p. 5474-5491.
    70. Li, Z., J. Gunn, M.H. Chen, A. Cooper, and M. Zhang, On-site alginate gelation for enhanced cell proliferation and uniform distribution in porous scaffolds. J Biomed Mater Res A, 2008. 86: p. 552-559.
    71. Murphy, C.M. and F.J. O'Brien, Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhesion and Migration, 2010. 4: p. 377-381.
    72. Okeyo, K.O., Y. Kibe, and T. Adachi, Controlling macroscale cell alignment in self-organized cell sheets by tuning the microstructure of adhesion-limiting micromesh scaffolds. Materials Today Advances, 2021. 12: p. 100194-100202.
    73. Roosa, S.M., J.M. Kemppainen, E.N. Moffitt, P.H. Krebsbach, and S.J. Hollister, The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J Biomed Mater Res A, 2010. 92: p. 359-368.
    74. O'Brien, F.J., B.A. Harley, M.A. Waller, I.V. Yannas, L.J.d. Gibson, and P.J. Prendergast, The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technology and Health Care, 2007. 15: p. 3-17.
    75. Hulbert, S.F., F.A. Young, R.S. Mathews, J.J. Klawitter, C.D. Talbert, and F.H. Stelling, Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res, 1970. 4: p. 433-456.
    76. Tytgat, L., M.R. Kollert, L. Van Damme, H. Thienpont, H. Ottevaere, G.N. Duda, S. Geissler, P. Dubruel, S. Van Vlierberghe, and T.H. Qazi, Evaluation of 3D Printed Gelatin-Based Scaffolds with Varying Pore Size for MSC-Based Adipose Tissue Engineering. Macromolecular Bioscience, 2020. 20: p. 1900364-1900369.
    77. Souness, A., F. Zamboni, G.M. Walker, and M.N. Collins, Influence of scaffold design on 3D printed cell constructs. J Biomed Mater Res B Appl Biomater, 2018. 106: p. 533-545.
    78. Bagheri, A., M. Asadi Eydivand, A.A. Rosser, C.M. Fellows, and T.C. Brown, 3D Printing of Customized Drug Delivery Systems with Controlled Architecture via Reversible Addition‐Fragmentation Chain Transfer Polymerization. Advanced Engineering Materials, 2023. 25: p. 2201785-2201793.
    79. Liu, S., Y. Hu, J. Zhang, S. Bao, L. Xian, X. Dong, W. Zheng, Y. Li, H. Gao, and W. Zhou, Bioactive and Biocompatible Macroporous Scaffolds with Tunable Performances Prepared Based on 3D Printing of the Pre‐Crosslinked Sodium Alginate/Hydroxyapatite Hydrogel Ink. Macromolecular Materials and Engineering, 2019. 304: p. 1800698-1800708.
    80. Tran, H.N., I.G. Kim, J.H. Kim, E.J. Chung, and I. Noh, Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization. Biomaterials Research, 2022. 26: p. 75-93.
    81. Dathathri, E., G. Thakur, K.B. Koteshwara, N.V. Anil Kumar, and F.C. Rodrigues, Investigating the effect of freezing temperature and cross-linking on modulating drug release from chitosan scaffolds. Chemical Papers, 2019. 74: p. 1759-1768.
    82. Haris, M.S., N.H.M. Azlan, M. Taher, S.M. Rus, and B. Chatterjee, 3D-printed Drugs: A Fabrication of Pharmaceuticals towards Personalized Medicine. Indian Journal of Pharmaceutical Education and Research, 2020. 54: p. s411-s422.
    83. Teoh, J.H., S.M. Tay, J. Fuh, and C.H. Wang, Fabricating scalable, personalized wound dressings with customizable drug loadings via 3D printing. Journal of Controlled Release, 2022. 341: p. 80-94.
    84. Wang, J., B. Xie, Z. Zhu, G. Xie, and B. Luo, 3D-printed construct from hybrid suspension as spatially and temporally controlled protein delivery system. Journal of Biomaterials Applications, 2021. 0: p. 1-12.
    85. Murr, L.E., Strategies for creating living, additively manufactured, open-cellular metal and alloy implants by promoting osseointegration, osteoinduction and vascularization: An overview. Journal of Materials Science & Technology, 2019. 35: p. 231-241.
    86. Ganji, F., M.J. Abdekhodaie, and A. Ramazani S.A, Gelation time and degradation rate of chitosan-based injectable hydrogel. Journal of Sol-Gel Science and Technology, 2007. 42: p. 47-53.
    87. Ikhaddalene, S., F. Zibouche, A. Ponton, A. Irekti, and F. Carn, Synthesis and Rheological Properties of Magnetic Chitosan Hydrogel. Periodica Polytechnica Chemical Engineering, 2021. 65: p. 378-388.
    88. Zhang, N., J. He, and F. Wu, Tuning the gelation behavior and cellular response of thermo-sensitive chitosan hydrogels. Materials Letters, 2020. 260: p. 126903-126906.
    89. Rahimnejad, M., T. Labonte Dupuis, N.R. Demarquette, and S. Lerouge, A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Biomedical Materials, 2020. 16: p. 015003-015017.
    90. Cardoso, S., F. Narciso, N. Monge, A. Bettencourt, and I.A.C. Ribeiro, Improving Chitosan Hydrogels Printability: A Comprehensive Study on Printing Scaffolds for Customized Drug Delivery. International Journal of Molecular Sciences, 2023. 24: p. 973-987.
    91. Rossi, F., F. Castiglione, M. Ferro, P. Marchini, E. Mauri, M. Moioli, A. Mele, and M. Masi, Drug-Polymer Interactions in Hydrogel-based Drug-Delivery Systems: An Experimental and Theoretical Study. Chemphyschem, 2015. 16: p. 2818-2825.
    92. Perale, G., P. Arosio, D. Moscatelli, V. Barri, M. Muller, S. Maccagnan, and M. Masi, A new model of resorbable device degradation and drug release: transient 1-dimension diffusional model. Journal of Controlled Release, 2009. 136: p. 196-205.
    93. Mio, L., P. Sacco, and I. Donati, Influence of Temperature and Polymer Concentration on the Nonlinear Response of Highly Acetylated Chitosan-Genipin Hydrogels. Gels, 2022. 8: p. 194-204.
    94. Akhavan Kharazian, N. and H. Izadi Vasafi, Preparation and characterization of chitosan/gelatin/nanocrystalline cellulose/calcium peroxide films for potential wound dressing applications. International Journal of Biological Macromolecules, 2019. 133: p. 881-891.
    95. Delmar, K. and H. Bianco Peled, The dramatic effect of small pH changes on the properties of chitosan hydrogels crosslinked with genipin. Carbohydrate Polymers, 2015. 127: p. 28-37.
    96. Pisani, S., R. Dorati, F. Scocozza, C. Mariotti, E. Chiesa, G. Bruni, I. Genta, F. Auricchio, M. Conti, and B. Conti, Preliminary investigation on a new natural based poly(gamma-glutamic acid)/Chitosan bioink. J Biomed Mater Res B Appl Biomater, 2020. 108: p. 2718-2732.
    97. Kim, H.J., A.T. Mohammadi, A. Kumar, and A.E. Fouda, Asymmetric membranes by a two-stage gelation technique for gas separation: formation and characterization. Journal of Membrane Science, 1999. 161: p. 229-238.
    98. Moshayedi, S., H. Sarpoolaky, and A. Khavandi, Fabrication, swelling behavior, and water absorption kinetics of genipin‐crosslinked gelatin–chitosan hydrogels. Polymer Engineering & Science, 2021. 61: p. 3094-3103.
    99. Zhang, Q., Y. Zhang, and M. Lang, Mild method for the agglomeration of dispersed polycaprolactone microspheres via a genipin-crosslinked gelatin hydrogel. Journal of Applied Polymer Science, 2013. 129: p. 689-698.
    100. Lin, H.Y. and C.T. Yeh, Genipin-crosslinked chitosan scaffolds and its efficacy in releasing anti-inflammatory medicine. Bio-Medical Materials and Engineering, 2012. 22: p. 321-332.
    101. Eskitoros Togay, S.M., Y.E. Bulbul, S. Tort, F. Demirtas Korkmaz, F. Acarturk, and N. Dilsiz, Fabrication of doxycycline-loaded electrospun PCL/PEO membranes for a potential drug delivery system. International Journal of Pharmaceutics, 2019. 565: p. 83-94.
    102. Shanmuganathan, S., N. Shanumugasundaram, N. Adhirajan, T.S. Ramyaa Lakshmi, and M. Babu, Preparation and characterization of chitosan microspheres for doxycycline delivery. Carbohydrate Polymers, 2008. 73: p. 201-211.
    103. Lu, H.T., T.W. Lu, C.H. Chen, and F.L. Mi, Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2019. 128: p. 973-984.
    104. Naseri, E., C. Cartmell, M. Saab, R.G. Kerr, and A. Ahmadi, Development of N,O-Carboxymethyl Chitosan-Starch Biomaterial Inks for 3D Printed Wound Dressing Applications. Macromolecular Bioscience, 2021. 21: p. 2100368-2100376.
    105. Holmes, N.E. and P.G.P. Charles, Safety and Efficacy Review of Doxycycline. Clinical Medicine: Therapeutics, 2009. 1: p. 471–482.
    106. Seymour, R.A. and P.A. Heasman, Tetracyclines in the management of periodontal diseases. A review. J Clin Periodontol, 1995. 22: p. 22-35.
    107. Salama, A., Chitosan based hydrogel assisted spongelike calcium phosphate mineralization for in-vitro BSA release. International Journal of Biological Macromolecules, 2018. 108: p. 471-476.

    無法下載圖示 全文公開日期 2033/08/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2028/08/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE