簡易檢索 / 詳目顯示

研究生: 林冠宏
Kuan-Hung Lin
論文名稱: 含有聚醚交聯奈米區域之環氧-胺網狀物之形成及其性質之研究
Formation and Properties of Epoxy-Amine Networks Containing Nanostructured Ether-Crosslinked Domains
指導教授: 許應舉
Ying-Gev Hsu
口試委員: 陳志堅
Jyh-Chien Chen
陳燿騰
Yaw-Terng Chern
戴子安
Chi-An Dai
林江珍
Jiang-Jen Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 61
中文關鍵詞: 聚醚交聯奈米區域咪唑衍生物奈米區域增韌劑環氧-胺網狀物
外文關鍵詞: nanostructured ether-crosslinked domains, imidazole derivatives, nanodomain toughener, epoxy-amine networks
相關次數: 點閱:279下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討一含有奈米區域增韌劑(nanodomain toughener)—軟性聚醚交聯奈米區域(nanostructured ether-crosslinked domains, NECDs)之環氧-胺網狀物之形成,進而研究其提升靭性(toughness)的反應機制。環氧樹脂—雙酚A二縮水甘油醚(diglycidyl ether bisphenol A epoxy resin, DGEBA)和硬化劑—二胺基二苯甲烷(4,4′-methylene dianiline, MDA)之混合液,於不同含量之咪唑衍生物(簡稱“咪唑”)—1-甲基咪唑(1-methylimidazole, 1-MI)或2-甲基咪唑(2-methylimidazole, 2-MI)—的存在下加熱硬化,則DGEBA的環氧基團不僅和MDA苯環上的胺基進行聚加成反應(polyaddition)以形成環氧-胺之剛性網狀結構基材(matrix),更可以藉由自身的陰離子開環聚合(anionic ring-opening polymerization)以形成與環氧-胺網狀硬性結構相連接之軟性NECDs。本論文藉由微差掃描卡計(DSC)和傅立葉轉換紅外光譜儀(FTIR)研究DGEBA/MDA混合液在咪唑存在(或不存在)下之硬化反應行為,亦藉由原子力顯微鏡(AFM)研究產物—含5~30奈米NECDs之環氧-胺網狀物—之形態(morphology)。研究發現,DGEBA/MDA溶液在最適含量(~0.15至0.30 wt%)的咪唑存在下所產生的NECDs,可以在不大幅影響玻璃轉移溫度(Tg)下,能有效的提升環氧-胺網狀物之拉伸、破壞韌性和熱安定性質,其獨特的韌性機構和熱行為亦在論文中做詳細的討論。


    Epoxy-amine networks with a nanodomain toughener-soft nanostructured ether-crosslinked domains (NECDs), which could increase the fracture and tensile toughness of the networks, were simply obtained when a mixture of diglycidyl ether bisphenol A (DGEBA) epoxy resin and 4,4′-methylene dianiline (MDA) hardener was heat-cured in the presence of varying amounts of the imidazole derivatives (called imidazoles)—1-methylimidazole (1-MI) or 2-methylimidazole (2-MI). Under these conditions, the epoxide groups in DGEBA underwent not only polyaddition with the aromatic amine of the MDA to form a hard epoxy-amine networked matrix but also anionic ring-opening polymerization by itself to build soft NECDs connected to the epoxy-amine matrix. The curing chemistry of the DGEBA/MDA mixture, both with and without the imidazoles, was studied using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The morphology of the networks dispersed with 5~30 nm-sized NECDs was investigated by atomic force microscopy (AFM). When the optimum amount (~0.15–0.30 wt%) of imidazoles was added, the NECDs produced were effective in significantly increasing the tensile and fracture toughness and the thermal stability of the epoxy-amine networks without markedly sacrificing the glass transition temperature (Tg). The novel toughening mechanism and thermal behavior of the epoxy-amine networks were discussed.

    目錄 中文摘要................................................Ⅰ 英文摘要................................................Ⅲ 目錄....................................................Ⅵ 附圖索引................................................Ⅷ 附表索引................................................Ⅹ 一、 前言................................................1 二、 文獻回顧............................................5 三、 基本原理............................................9 3.1 空洞增韌機制........................................11 3.2 去鍵結(debonding)增韌機制...........................13 3.3 原子力顯微鏡原理....................................15 四、 實驗...............................................18 4.1 實驗藥品............................................18 4.2 環氧-胺網狀物之製備.................................20 4.3 儀器測試與分析......................................22 4.3.1 微差掃描卡計分析..................................22 4.3.2 傅立葉轉換紅外線光譜分析..........................22 4.3.3 原子力顯微鏡分析..................................22 4.3.4 動態機械性質分析..................................23 4.3.5 拉伸韌性測試......................................23 4.3.6 破壞韌性測試......................................23 4.3.7 掃描式電子顯微鏡分析..............................24 4.3.8 熱重量損失分析....................................24 五、 結果與討論.........................................26 5.1 DGEBA/MDA混合液在咪唑存在下之反應...................26 5.1.1 微差掃描卡計分析..................................28 5.1.2 傅立葉紅外線光譜分析..............................33 5.2 聚醚交聯結構之環氧-胺網狀物之成型...................36 5.3 環氧-胺網狀物之形態.................................38 5.4 環氧-胺網狀物之性質.................................42 5.4.1 動態機械性質分析..................................42 5.4.2 拉伸韌性..........................................45 5.4.3 破壞韌性和破壞機構................................47 5.4.4 熱安定性質........................................51 六、 結論...............................................56 七、 參考文獻...........................................57

    1.Y.G. Hsu, C.W. Liang, J. Appl. Polym. Sci. 106 (2007) 1576.
    2.K. Yamanaka, T. Inoue, J. Mater. Sci. 25 (1990) 241.
    3.Y. Huang, A.J. Kinloch, J. Mater. Sci. 27 (1992) 2763.
    4.R. Thomas, J. Abraham, P.S. Thomas, S. Thomas, J. Polym. Sci. Part B: Polym. Phys. 43 (2004) 2531.
    5.R. Thomas, S. Durix, C. Sinture, T. Omonov, S. Goossens, G. Groeninckx, P. Moldenaers, S. Thomas, Polymer 48 (2007) 1695.
    6.C.W. Wise, W.D. Cook, A.A. Goodwin, Polymer 41 (2000) 4625.
    7.A. Saxena, B. Francis, V.L. Rao, K.N. Ninan, J. Appl. Polym. Sci. 100 (2006) 3536.
    8.J.N. Sultan, F. McGarry, Polym. Eng. Sci. 13 (1973) 29.
    9.B. Ressell, R. Chartoff, Polymer 46 (2005) 785.
    10.H.R. Azimi, R.A. Pearson, R.W. Hertzberg, J. Mater. Sci. 31 (1996) 3777.
    11.B.J.P. Jansen, S. Rastogi, H.E.H. Meijer, P.J. Lemstra, Macromolecules 34 (2001) 3998.
    12.B.J.P. Jansen, S. Rastogi, H.E.H. Meijer, P.J. Lemstra, Macromolecules 32 (1999) 6290.
    13.V. Rebizant, A.S. Vent, F. Tournilhac, E.G. Reydet, C. Navarro, J.P. Pascault, L. Leibler, Macromolecules 37 (2004) 8017.
    14.V. Rebizant, V. Abetz, F. Tournilhac, F. Court, L. Leibler, Macromolecules 36 (2003) 9889.
    15.J.M. Dean, P.M. Lipic, R.B. Grubbs, R.F. Cook, F.S. Bates, J. Polym. Sci.: Part B: Polym. Phys. 39 (2001) 2996.
    16.R.B. Grubbs, J.M. Dean, F.S. Bates, Macromolecules 34 (2001) 8593.
    17.R.B. Grubbs, J.M. Dean, E.B. Margaret, F.S. Bates, Macromolecules 33 (2000) 9522.
    18.J.M. Dean, R.B. Grubbs, W. Saad, R.F. Cook, F.S. Bates, J. Polym. Sci.: Part B: Polym. Phys. 41: (2003) 2444.
    19.J.D. Liu, H.J. Sue, Z.J. Thompson, F.S. Bates, M. Dettloff, N. Jacob, H. Pham, Macromolecules 41 (2008) 7616.
    20.L. Ruiz-Perez, G.J. Royston, J.P.A. Fairclough, A.J. Ryan, Polymer 49 (2008) 4475.
    21.Z. Su, S.S. Linda, D. Renee, H. Henrik, A. Tommaso, Composites science and technology, 62 (2008) 2965.
    22.J. Wu, Y.S. Thio, F.S. Bates, Journal of polymer science part B:polymer chemistry 43 (2005) 1950.
    23.A.G. Li, L.W. Burggraf, Nanotechnology materials and devices
    conference (2009) 104.
    24.P. Trtik, J. Kaufmann, U. Volz, Cement and concrete research 42 (2012) 215.
    25.S.K. Ooi, W.D. Cook, G.P. Simon, C.H. Such, Polymer 41 (2000) 3639.
    26.M.S. Heise, G.C. Martin, Macromolecules 22 (1989) 99.
    27.L. Liu, M. Li, J. Appl. Polym. Sci. 117 (2010) 3220.
    28.J. Vogt, J Adhesion 22 (1987) 139.
    29.R. M. Silverstein, Spectrometric Identification of Organic Compounds, 6th ed.; Wiley: New York, 1998; Chapter 3.
    30.T. Garima, S. Deepak, Mater. Sci. Eng. Part A 443 (2007) 262.
    31.Q. Guo, R. Thomann, W. Gronski, T.A. Thomas, Macromolecules 35 (2002) 3133.
    32.D. Zhang, D. Jia, J. Appl. Polym. Sci. 101 (2006) 2504.
    33.S.J. Park, F.L. Jin, J.S. Shin, Mater. Sci. Eng. Part A 390 (2005) 240.
    34.O. Gryshchuk, J.K. Kocsis, J. Polym. Sci. Part A: Polym. Chem. 42 (2004) 5471.
    35.L.A. Maria, M.F. Patricia, J.J.W. Roberto, Polymer 44 (2003) 1537.
    36.K. Xiao, L. Ye, Y.S. Kwok, J. Mater. Sci. 33 (1998) 2831.
    37.W. Liu, S.V. Hoa, M. Pugh, Polym. Eng. Sci. 44 (2004) 1178.
    38.S. Zhang, J. Wang, Q.Guo, Polymer 21 (1996) 4667.
    39.J. Wu, Y.S. Thio, F.S. Bates, J. Polym. Sci. Part B: Polym. Phys. 43 (2005) 1950.
    40.R.M. Hydro, R.A. Pearson, J. Polym. Sci. Part B: Polym. Phys. 45 (2007) 1470.
    41.J.F. Fu, L.Y. Shi, S. Yuan, Q.D. Zhong, D.S. Zhang, Y. Chen, J. Wu, Polym. Advan. Technol. 19 (2008) 1597.
    42.H. Shi, Z. Fang, A. Gu, L. Tong, Z. Xu, J. Appl. Polym. Sci. 106 (2007) 3098.
    43.C.H. Lin, C.C. Feng, T.W. Hwang, Eur. Polym. J. 43 (2007) 725.
    44.T. Maity, B.C. Samanta, S. Dalai, A.K. Banthia, Mater. Sci. Eng. Part A 464 (2007) 38.
    45.J. Wan, Z.Y. Bu, C.J. Xu, B.G. Li, H. Fan, Chem. Eng. J. 171 (2011) 357.
    46.J.S. Nakka, K.M.B. Jansen, L.J. Ernst, W.F. Jager, J. Appl. Polym. Sci. 108 (2008) 1414.
    47.A.E. Gerbase, C.L. Petzhold, A.P.O. Costa, J. Am. Oil. Chem. Soc. 79 (2002) 797.
    48.A.P. Gupta, S. Ahmad, A. Dev, Polym. Eng. Sci. 51 (2011) 1087.
    49.T. Fu, G. Zhang, S. Zhong, C. Zhao, K. Shao, L. Wang, H. Na, J. Appl. Polym. Sci. 105 (2007) 2611.
    50.C. Martin, J.C. Ronda, V. Cadiz, J. Polym. Sci. Part A: Polym. Chem. 44 (2006) 1701.

    QR CODE