簡易檢索 / 詳目顯示

研究生: 彭暐中
Wei-Chung Peng
論文名稱: 具光學開關的16x64矽光子相位陣列量測與封裝
Packaging and Characterization of 16x64 Silicon Optical Phase Arrays with Optical Switches
指導教授: 李三良
San-Liang Lee
口試委員: 徐世祥
Shih-Hsiang Hsu
洪勇智
Yung-Jr Hung
傅建中
Chien-Chung Fu
李三良
San-Liang Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 118
中文關鍵詞: 光學相位陣列光學天線次波長光柵光學開關大轉向角
外文關鍵詞: optical phase arrays, optical antenna, sub-wavelength gratings, optical switches, large steering angle
相關次數: 點閱:485下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著車輛上的駕駛輔助系統和自動駕駛等功能逐漸普及,車用光學雷達的需求與研究也日漸增加。其中光束掃描是光學雷達應用的關鍵技術,而利用矽光子相位陣列即可實現低功耗、微型化和高解析度的光束掃描需求,在實現固態光學雷達的領域中扮演著關鍵技術的角色。
在本論文中,我們首先利用台積電(TSMC)所提供的D35多項目晶圓(multi-project wafer, MPW)服務,設計了一種新型轉接板,封裝多種OPA晶片和驅動電路。轉接板作為小型化電路板用途,用於連接不同尺寸、高度的光子、電子晶片,並優化晶片上的數百條導線連接問題。和現有的龐大電路板設計相比,該轉接板降低了串聯電阻問題,並提升了性能表現。
在本篇論文中我們也重點分析和量測兩種不同類型的OPA,一種是具有光學開關的16x64高密度光學相位陣列設計,另一種則為新型的串聯光學天線結構,其特色為不使用分光器便將輸入光分配到所有的光學天線中。上述晶片皆使用比利時微電子研究中心(IMEC)的多項目晶圓服務,使用標準SOI平台製造OPA,而所有量測皆使用自製的控制軟體執行。
高密度16x64光學相位陣列設計主要目的為通過四級1x2的光學開關將光分別引導到具有不同光束轉向角範圍的不同子OPA來實現廣角的光束轉向,測量並驗證切換電壓在4.2V以內的各項表現,幾乎所有開關切換都可在3V以內順利完成,也發現當使用的電極數越多,晶片受到熱串擾效應會越嚴重。此外,晶片遠場的量測得到比模擬結果更大的掃描範圍。
由於大型光學相位天線陣列會有因製程而導致的相位誤差問題,所以需要借助複雜的控制電路來校正其表現,為了克服上述問題,我們使用了一種串聯OPA設計,目的為改善由製程引起的相位誤差並降低為了控制光束的電路複雜性。該設計採用串聯方式的原因為藉由降低結構內部的光柵衍射效率,實現小發散角的發射均勻性,以此代替一般天線陣列的並行排列方式,並通過單純的波長調諧方式實現基本的二維方向控制。在遠場的量測結果中,主峰彼此相鄰2.45度,而在掃描頻譜中,可觀察到天線衍射出光維持高度的穩定性。


With the wide-spreading applications of driver assistance systems and autonomous vehicles, the demands and research on automotive LiDAR are fast increasing. Beam steering is the key function for LiDAR technology. Silicon photonics based optical phase arrays (OPAs) play important roles in realizing solid-state LiDARs due to their low power consumption, compact size, and high-resolution beam scanning capability.
In this thesis, we first design an interposer board by using the D35 multi-project wafer (MPW) service offered by TSMC to package the OPA chip and the driving circuits. The interposer board serves as a miniaturized circuit board to connect hundreds of wire connections between the electrodes on different photonic and electronic chips of different sizes and heights. This reduces the series resistance and improves the tuning performance by comparing to the prior bulky circuit board.
In addition, we focus on analysis and measurement of two different types of OPAs: one is high-density 16x64 large-scale OPA with optical switches; and the other is a new cascaded optical antenna structure without using optical splitters to distribute the input light to all optical antennas. The OPAs were successfully fabricated with standard silicon-on-insulator (SOI) platform by using the IMEC MPW service. All measurements are conducted with self-made control software.
Large-scale silicon photonics integrated 16x64 optical phase arrays (OPAs) are designed to achieve wide-angle beam steering by using four stages of 1x2 optical switches to direct the light to different groups of OPAs, each covers different ranges of beam steering angles. The measurement verifies the switching to different sub-OPAs with an applied voltage < 4.2. Almost all switching work can be completed smoothly within 3V, and we also found that when the number of electrodes used is increased, the thermal crosstalk effect of the chip will be more serious. We also obtained a larger scanning range than the simulation results in the far-field measurement of the chip.
The cascaded OPAs are designed to reduce the complexity of control circuits for steering the beam and correcting the phase errors caused by the fabrication fluctuation. The design uses a series connection of optical antennas which allow to achieve 2-dimensional beam steering with purely wavelength tuning. Instead of the single arrangement of the general antenna array to achieve emission uniformity across multiple grating antennas, multimode optical antenna array is adopted to reduce the grating diffraction efficiency and to achieve uniform emission patterns with small divergent angles. In the far-field measurement results, the main peaks are spaced by 2.45 degrees. In the beam steering measurement, stable light diffraction can be clearly observed.

摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XIV 第一章 導論 1 1-1前言 1 1-2 研究動機 2 1-3 論文研究方向 3 1-4 論文架構 4 第二章 光學天線陣列基本原理 5 2-1光波導元件之基本原理 5 2-2光波導元件之傳播模態 6 2-3光柵相關理論 9 2-3-1 布拉格定律 9 2-3-2 布拉格光柵理論 11 2-4干涉及繞射相關理論 12 2-4-1 光波動原理 12 2-4-2 狹縫相關理論 14 2-4-3 近遠場相關理論 18 第三章 相關元件介紹 22 3-1多模干涉耦合器 22 3-2 馬赫-曾德爾干涉儀開關 24 3-3 光學天線陣列 27 第四章 晶片介紹與量測 31 4-1量測前置作業與校準 31 4-2量測平台優化 35 4-3 IMEC-SiPh 108A的優化整合 36 4-3-1 設計緣由 36 4-3-2 封裝架構和計算 37 4-3-3 實際成品及量測方式 38 4-4 IMEC-SiPh 109A 矽光子晶片量測 40 4-4-1 晶片結構說明 40 4-4-2 主要量測元件 41 4-4-3 量測架構簡介 42 4-4-4 焊線連接 43 4-4-5 量測操作方法 45 4-5 IMEC-SiPh 109B 矽光子晶片量測 50 4-5-1 晶片結構說明 51 4-5-2 主要量測元件 52 4-5-3 量測架構簡介 53 4-5-4 量測操作方法 54 第五章 量測結果與分析 57 5-1 D35基板量測結果 57 5-2 IMEC-SiPh 109A量測結果 59 5-2-1 測試元件結果 60 5-2-2 光學開關量測 63 5-2-3 數據分析和討論 85 5-3 IMEC-SiPh 109B量測結果 89 5-3-1 光學天線陣列 89 5-3-2 彎曲(蛇)型光學天線陣列 90 第六章 結論和未來發展 93 6-1 成果與討論 93 6-2 未來發展方向 94 參考資料 96

參考資料
[1] X. Han, Q. Wang, Z. Wang, Y. Fang, Y. He, W. Geng, Z. Pan, and Y. Yue, “Solid-State Photonics-Based Lidar With Large Beam-Steering Angle by Seamlessly Merging Two Orthogonally Polarized Beams,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 27, no.1, pp. 1-8, 2021, Art. no. 8300608.
[2] C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, “Optical Phased Array with Small Spot Size, High Steering Range and Grouped Cascaded Phase Shifters,” Advanced Photonics Congress, IPRSN, paper IW1B.2, OSA 2016.
[3] S.W. Chung, H. Abediasl, H. Hashemi, “A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS,” IEEE Journal of Solid-State Circuits, vol. 53, pp. 275-296, 2018.
[4] G. Dong, W. Deng, J. Hou, L. Chen, and X. Zhang, “Ultra-compact multi-channel all-optical switches with improved switching dynamic characteristics,” Optics Express vol. 26, no. 20, pp. 25630-25644, 2018.
[5] K. V. Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Optics Letters, vol. 34, no. 9, pp. 1477-1479, 2009.
[6] C. T. DeRose, R. D. Kekatpure, D. C. Trotter, A. Starbuck, J. R. Wendt, A. Yaacobi, M. R. Watts, U. Chettiar, N. Engheta, and P. S. Davids, “Electronically controlled optical beam-steering by an active phased array of metallic nano antennas,” Optics Express, vol. 21, no. 4, pp. 5198-5208, 2013.
[7] D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Optics Letters, vol. 39, no. 4, pp. 941-944, 2014.
[8] J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two-dimensional beam scanner,” Optics Express, vol. 23, no. 5, pp. 5861-5874, 2015.
[9] C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Optics Letters, vol. 42, no. 20, pp. 4091-4094, 2017.
[10] C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long Range LiDAR and Free Space Data Communication with High Performance Optical Phased Arrays,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no.5, pp. 1-8, 2019, Art. no. 7700108.
[11] K. Okamoto, Fundamentals of Optical Waveguides, Academic Press 2nd ed, December 13, 2005.
[12] A. Yariv, P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation, Wiley Interscience, November, 2002.
[13] L. B. Soldano, and E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications,” Journal of Lightwave Technology, vol. 13, no. 4, pp. 615-626, April, 1995.
[14] R. Hui and M. O'Sullivan, Fiber Optic Measurement Techniques, Academic Press, chapter 2, pp. 129-258, 2009.
[15] 鍾詩賢,“矽光子光學相位陣列的量測與相位修正,”國立臺灣科技大學碩士論文, 2021.
[16] W.-X. Chen, C.-H. Yang, T.-H. Lee, C.-H. Kuo, S.-H. Chung, S.-L. Lee, “Realization of optical phase arrays by using apodized subwavelength gratings,” 25th OECC, Taipei, Taiwan, 2020.
[17] T.-H. Lee, S.-H. Chung, W.-X. Chen, Y.-H. Lin, P.-Y. Wu, V. Kung, T.-T. Hu, S.-L. Lee, “Silicon photonic optical phase arrays with apodized subwavelength gratings,” 26th MOC, Shizuoka, Japan, 2021.
[18] W.-C. Peng, S.-H. Chung, W.-X. Chen, T.-H. Lee, S.-L. Lee, “Experimental demonstration of 2x64 optical phase array with uniform emission and high PSLL,” 26th OPTIC, Kaohsiung, Taiwan, 2021.
[19] M. C. Hsieh, S. Lin, I. Hsu, C.-Y. Chen, N. Cho, “Fine pitch high bandwidth flip chip package on package development,” 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition.
[20] M. Liu, X. Liu, Z. Min, B. Wu, Z. Duan, “Design and Implementation of a Compact Dual-band RF System in Package Module,” 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT).
[21] J. Liu, B. Wang, Y. Zhou, L. Chen, Z. Duan, Q. Ma, “Design and implementation of a Dual-band RF SiP Module based on Package on Package Technology”, 2018 International Conference on Microwave and Millimeter Wave Technology, 2018.
[22] Z. Li, L. Lv, P. Wang, G. Xu, R. Zeng, W. Zhong, H. Hao, L. Wan, “Compact and high density integrated design with high isolation for S-band up-conversion system”, 2017 18th International Conference on Electronic Packaging Technology, pp. 483-486, 2017.
[23] 陳偉訓,“利用矽光子技術實現光學天線陣列,”國立臺灣科技大學碩士論文, 2020.
[24] N. Dostart, B. Zhang, A. Khilo, M. Brand, K. A. Qubaisi, D. Onural, D. Feldkhun, K. H. Wagner, and M. A. Popović, “Serpentine optical phased arrays for scalable integrated photonic lidar beam steering”, Optica, vol.7, no. 6, pp. 726-733, 2020.
[25] 楊家亘, “利用矽光子技術實現八通道分波多工器與光學天線設計,” 國立台灣科技大學碩士論文, 2019.
[26] J. Notaros, C. V. Poulton, M. Raval, and M. R. Watts, “Near-Field-Focusing Integrated Optical Phased Arrays,” IEEE Journal of Lightwave Technology, vol. 36, no. 24, pp. 5912-5920, 2018.
[27] J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Free-space Beam Steering in Two Dimensions Using a Silicon Optical Phased Array,” Optical Fiber Communication Conference, 2012.
[28] S. Chung, H. Abediasl, and H. Hashemi, “A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS,” IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 257-296, 2018.
[29] T. Kim, P. Bhargava, C. V. Poulton, J. Notaros, A. Yaacobi, E. Timurdogan, C. Baiocco, N. Fahrenkopf, S. Kruger, T. Ngai, Y. Timalsina, M. R. Watts, and V. Stojanovi´, “A Single-Chip Optical Phased Array in a Wafer-Scale Silicon Photonics/CMOS 3D-Integration Platform,” IEEE Journal of Solid-State Circuits, vol. 54, no. 11, pp. 3061-3074, 2019.
[30] W. Ma, S. Tan, K. Wang, W. Guo, Y. Liu, L. Liao, L. Zhou, J. Zhou, X. Li, L. Liang, and W. Li, “Practical two-dimensional beam steering system using an integrated tunable laser and an optical phased array,” Applied Optics, vol. 59, no. 32, pp. 9985-9994, 2020.
[31] H.-W. Rhee, J.-B. You, H. Yoon, K. Han, M. Kim, B. G. Lee, S.-C. Kim, and H.-H. Park, “32 Gbps Data Transmission With 2D Beam-Steering Using a Silicon Optical Phased Array,” IEEE Photonics Technology Letters, vol. 32, no. 13, pp. 803-806, 2020.
[32] Y. Kim, H. Yoon, J.-B. You, M. Kim, and H.-H. Park, “Wide-Angle Beam-Steering Using an Optical Phased Array with Non-Uniform-Width Waveguide Radiators,” Journals, Photonics, vol. 7, no 3, pp. 1-9, August 2020.
[33] D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica, vol. 3, no. 8, pp. 887-890, 2016.

無法下載圖示 全文公開日期 2027/08/10 (校內網路)
全文公開日期 2027/08/10 (校外網路)
全文公開日期 2027/08/10 (國家圖書館:臺灣博碩士論文系統)
QR CODE