簡易檢索 / 詳目顯示

研究生: 林柏宏
Po-Hung Lin
論文名稱: 基於Envelope-Tracking之功率放大器動態偏壓電路
Envelope-Tracking Based Dynamic Biasing Circuit for Power Amplifier
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 楊成發
Chang-Fa Yang
邱弘緯
Hung-Wei Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 52
中文關鍵詞: envelope-tracking電源供應調變器envelope-tracking動態偏壓電路功率放大器CMOS類比積體電路通訊系統電源供應
外文關鍵詞: envelope-tracking supply modulator, envelope-tracking dynamic biasing, power amplifiers (PAs), CMOS analog integrated circuits, communication system power supplies
相關次數: 點閱:433下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本設計使用 TSMC 180 nm CMOS 製程實現基於Envelope-Tracking (ET)的動態偏壓電路,以提高應用於WIFI 6 HBT GaAs PA的效率。動態偏壓電路是利用Hybrid Supply Modulator所構成,其中Hybrid Supply Modulator係由Linear Modulator與Switching Modulator所組成。電路使用5 V電源供應並消耗0.155 W,當輸入訊號在1.5 V至3.5 V之間時,本電路提供1.5 V至3.5 V的輸出偏壓。電路的輸出電壓在20 MHz至100 MHz時產生10.324 mVPP至5.581 mVPP之紋波。根據測量結果,採用動態偏壓電路後,PA在輸出功率為27 dBm時,其PAE達到54.07%。


An envelope-tracking (ET) based dynamic biasing circuit is designed and implemented using TSMC 180-nm CMOS technology to improve the efficiency of the HBT GaAs PA for WIFI 6 wireless communication applications. Based on the hybrid supply modulator, the dynamic biasing circuit consists of a wideband linear modulator, and a switching modulator. Consuming 0.155 W from the 5-V supply, the circuit provides the output bias voltage from 1.5 V to 3.5 V for an input level from 1.5 V to 3.5 V. The output voltage of the circuit exhibits the ripple of 10.324 mVPP to 5.581 mVPP from 20 MHz to 100 MHz. The measurement results show that a PAE of 54.07 % was achieved at the output power of 27 dBm by using the dynamic biasing circuit.

摘要 I Abstract II 誌謝 III Table of Contents IV List of Figures V List of Tables VII Chapter 1 Introduction 1 Chapter 2 The Dynamic Biasing Circuit Design 3 2.1 Linear Modulator 4 2.2.1 Comparator 10 2.2.2 Buck Converter 14 2.3 The Dynamic Biasing Circuit Simulation 16 Chapter 3 The Dynamic Biasing Circuit Measurement 18 Chapter 4 Reconfigurable Linear Amplifier for Hybrid Supply Modulator 25 4.1 Introduction 25 4.2 The PA Behavioral Model Simulation Results 27 4.3 The Supply Modulator Circuit Design 30 4.4 Conclusion of Chapter 38 Chapter 5 Conclusion 39 Reference 40

[1]Ning Liu, Xinbo Ruan, Yazhou Wang, and Peng Zhou "High Bandwidth Series-Form Switch-Linear Hybrid Envelope Tracking Power Supply with Reduced Bandwidth Envelope and Step-Wave Edge Adjustment Methods," IEEE Transactions on Industrial Electronics, vol. 37, no. 12, pp. 14212-14221, Dec. 2022.

[2]M. Vasić, P. Cheng, Ó. García, J. Oliver, P. Alou, J. Cobos, D. Tena and F. J. Ortega-González "The Design of a Multilevel Envelope Tracking Amplifier Based on a Multiphase Buck Converter," IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4611-4627, June 2016.

[3]Hansik Oh, Jaekyung Shin, Woojin Choi, Yifei Chen, Hyeongjin Jeon, Young Chan Choi, Hyungmo Koo, Keum Cheol Hwang, Kang-Yoon Lee and Youngoo Yang "Dual-Mode Supply Modulator IC With an Adaptive Quiescent Current Controller for Its Linear Amplifier in LTE Mobile Power Amplifier," IEEE Access, pp. 147768 -147779, Oct. 2021.

[4]Ya-Ting Hsu, Zong-Yi Lin, Jia-Jyun Lee and Ke-Horng Chen "An Envelope Tracking Supply Modulator Utilizing a GaN-Based Integrated Four-Phase Switching Converter and Average Power Tracking-Based Switch Sizing With 85.7% Efficiency for 5G NR Power Amplifier," IEEE Journal of Solid-State Circuits, vol. 56, no. 10, pp. 3167-3176, Oct. 2021.

[5]Yu-Chen Lin and Yi-Jan Emery Chen "A CMOS Envelope Tracking Supply Converter for RF Power Amplifiers of 5G NR Mobile Terminals," IEEE Transactions on Power Electronics, vol. 36, no. 6, pp. 6814-6823, June 2021.

[6]Huiqiao He, Yang Kang, Tong Ge, Linfei Guo and Joseph S. Chang "A 2.5-W 40-MHz-Bandwidth Hybrid Supply Modulator With 91% Peak Efficiency, 3-V Output Swing, and 4-mV Output Ripple at 3.6-V Supply," IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 712-723, Jan. 2019.

[7]Xun Liu, Heng Zhang, Philip K. T. Mok and Howard C. Luong "A Multi-Loop-Controlled AC-Coupling Supply Modulator With a Mode-Switching CMOS PA in an EER System With Envelope Shaping," IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1553-1563, June 2019.

[8]Pierre Medreli, Arnaud Delia Patrick Augeau, Audrey Martini, Guillaume Neveux, Philippe Bouysse, and Jean-Michel "Implementation of dual gate and drain dynamic voltage biasing to mitigate load modulation effects of supply modulators in envelope tracking power amplifiers," IEEE MTT-S International Microwave Symposium, 10 July 2014.

[9]Pierre Medrel, Audrey Martin, Tibault Reveyrand, Guillaume Neveux, Denis Barataud, Philippe Bouysse, Jean-Michel Nebus, Luc Lapierre and Jean-Francois Villemazet "A 10-W S-band class-B GaN amplifier with a dynamic gate bias circuit for linearity enhancement," International Journal of Microwave and Wireless Technologies, vol. 6, issue 1, pp. 3-11, Feb. 2014.

[10]Byungjoon Park, Dongsu Kim, Seokhyeon Kim, Yunsung Cho, Jooseung Kim, Daehyun Kang, Sangsu Jin, Kyunghoon Moon, and Bumman Kim "High-Performance CMOS Power Amplifier With Improved Envelope Tracking Supply Modulator," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 3, pp. 798-809, March 2016.

[11]Yue Jing, and Bertan Bakkaloglu "A High Slew-Rate Adaptive Biasing Hybrid Envelope Tracking Supply Modulator for LTE Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 9, pp. 3245-3256, Sep. 2017

[12]Wei-Ting Tsai, Chong-Yi Liou, Zheng-An Peng, and Shau-Gang Mao "Wide-Bandwidth and High-Linearity Envelope-Tracking Front-End Module for LTE-A Carrier Aggregation Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 11, pp. 4657-4668, Nov. 2017.

[13]Min Tan, and Wing-Hung Ki "A 100 MHz Hybrid Supply Modulator With Ripple-Current-Based PWM Control," IEEE Journal of Solid-State Circuits, vol. 52, no. 2, pp. 569-578. Feb. 2017.

無法下載圖示
全文公開日期 2028/08/29 (校外網路)
全文公開日期 2028/08/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE