簡易檢索 / 詳目顯示

研究生: 李長隆
Chang-lung Lee
論文名稱: 2×2空頻區塊編碼正交分頻多工系統之低複雜度交叉數位預扭器之研究
A Study of Low Complexity Crossover Digital Predistorter for 2×2 SFBC OFDM Systems
指導教授: 張立中
Li-Chung Chang
口試委員: 曾德峰
Der-Feng Tseng
曾恕銘
Shu-Ming Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 78
中文關鍵詞: 交叉數位預扭器串音干擾功率放大器多輸入多輸出空頻區塊編碼正交分頻多工錯誤率頻譜功率密度
外文關鍵詞: DPD, PA, MIMO, SFBC, OFDM, BER, PSD, TD
相關次數: 點閱:310下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文提出一個低複雜度數位交叉預扭器(crossover digital predistorter, CO-DPD),在多輸入多輸出(multiple-input multiple-output, MIMO)的系統中補償串音干擾(crosstalk)及非線性功率放大器(power amplifier, PA)所造成的訊號失真。此多輸入多輸出系統使用2×2空頻區塊編碼(space frequency block coding, SFBC)的正交分頻多工(orthogonal frequency division multiplexing, OFDM)。因為傳統交叉數位預扭器的運算複雜度相對較高,因此我們提出一個低複雜度交叉數位預扭器來降低其複雜度的問題。低複雜度數位交叉預扭器與傳統交叉數位預扭器的性能比較將會使用錯誤率(bit error rate, BER)、TD(total degradation)以及頻譜功率密度(power spectral density, PSD)。


    This thesis proposes a low complexity crossover digital predistorter (CO-DPD) to compensate the non-linearity loss of a signal due to power amplifier (PA) and crosstalk interference in a multiple-input multiple-output (MIMO) system. This work applies 2×2 space frequency block coding (SFBC) for orthogonal frequency division multiplexing (OFDM) signal. Because the computational complexity of conventional CO-DPD is rather high, we propose a low complexity CO-DPD to mitigate the complexity problem. This low complexity CO-DPD has comparable performance with conventional CO-DPD. Several simulations evaluate the performance of our proposed method in bit error rate (BER), TD (total degradation) and power spectral density (PSD).

    第1章 緒論 1 1.1 研究背景 1 1.2 研究目的 1 1.3 章節概述 2 第2章 系統架構 3 2.1 正交分頻多工技術 3 2.2 MIMO OFDM 5 2.2.1 MIMO介紹 5 2.2.2 Alamouti編碼架構 6 2.2.3 STBC MIMO OFDM 10 2.2.4 MIMO SFBC OFDM 12 2.3 功率放大器 14 2.3.1 無記憶性的功率放大器模型 16 2.3.2 具記憶性的功率放大器模型 18 2.4 預扭器概念 20 2.5 串音干擾 21 2.5.1 串音干擾介紹 21 2.5.2 串音干擾 23 2.6 系統架構 25 第3章 低複雜度交叉數位預扭器 26 3.1 數位預扭器 26 3.2 交叉數位預扭器 29 3.3 低複雜度交叉數位預扭器 31 3.4 運算複雜度分析 33 3.4.1 矩陣運算 33 3.4.2 交叉數位預扭器複雜度 35 3.4.3 低複雜度交叉數位預扭器 36 3.4.4 複雜度分析比較 38 3.5 現有的MIMO預扭器架構與演算法討論 40 3.5.1 預扭器架構 40 3.5.2 演算法探討 41 3.6 Training symbol 44 第4章 模擬和討論 46 4.1 系統參數與分析介紹 46 4.2 系統模擬 49 4.2.1 BER 49 4.2.2 TD 56 4.2.3 PSD 62 4.3 分析與討論 67 第5章 結論 71 附錄 75

    [1] Y. Y. Woo, Y. Yang, J. Yi, J. Nam, J. Cha, and B. Kim, “A new adaptive feedforward amplifier for WCDMA base stations using imperfect signal cancellation,” Microwave J., vol. 46, no. 4, pp. 22-44, Apr. 2003.
    [2] Y. Kim, Y. Yang, S. H. Kang, and B. Kim, “Linearization of 1.85 GHz amplifier using feedback predistortion loop,” in IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, vol. 3, pp. 1675–1678, Jun. 1998.
    [3] A. N. D’Andrea, V. Lottici, and R. Reggiannini, “RF power amplifier linearization through amplitude and Phase Predistortion,” IEEE Transactions on Communications, vol. 44, no. 11, pp. 1477-1484, Nov. 1996.
    [4] G. Karam and H. Sari, “ A data predistortion technique with memory for QAM radio systems,” IEEE Transactions on Communications, vol.39, no. 2, pp. 336--344, Feb. 1991.
    [5] 電子工程專輯,"深入剖析MIMO系統" http://www.eettaiwan.com/ART_8800437322_617723_TA_765ed038.HTM
    [6] S. M. Alamouti, “A simple transmit diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16,no. 8, pp.1451-1485, 1998.
    [7] K. F. Lee, and B. D. Williams, “A space-time coded transmitter diversity technique for frequency selective fading channels,” in Proc. IEEE Sensor Array and Multichannel Signal Processing Workshop, Cambridge, MA, pp.149-152, 2000.
    [8] Y. S. Cho, J. Kim, W. Y. Yang, C. G. Kang, “MIMO-OFDM Wireless Communications with MATLAB”, John Wiley & Sons (Asia) Pte Ltd., 2010.
    [9] K. F. Lee, and B. D. Williams, “A space-frequency coded transmitter diversity technique for OFDM systems,” in Proc. IEEE GLOBECOM, San Francisco, CA, pp. 1473-1477, 2000.
    [10] A. A. M. Saleh, “Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers,” IEEE Transactions on Communications, vol. COM-29, no. 11, pp. 1715-1720, Nov. 1981.
    [11] Raich, Raviv, “Nonlinear system identification and analysis with applications to power amplifier modeling and power amplifier predistortion,” Ph.D. Dissertation, Georgia institute of technology, March 2004.
    [12] Kim, J. and Konstantinou, K., “Digital predistortion of wideband signals based on power amplifier model with memory," IEEE Electronics Letters, vol. 37, no. 23, pp. 1417-1418, Nov. 2001.
    [13] J. K. Cavers, “Amplifier linearization using a digital predistorter with fast adaptation and low memory requirements,” IEEE Transactions on Vehicular Technology, vol. 4, no. 4, pp. 374-382, Nov.1990.
    [14] L. Ding, G. Zhou, D. R. Morgan, Z. Ma, J. S. Kennedy, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. on Communications, Jan. 2004.
    [15] S. A. Bassam, M. Helaoui, S. Boumaiza, and F. M. Ghannouchi, “Experimental study of the effects of RF front-end imperfection on the MIMO transmitter performance,” in IEEE MTT-S Int. Microw. Symp Dig., Atlanta, GA, Jun. 2008, pp. 1187–1190.
    [16] Y. Palaskas, A. Ravi, S. Pellerano, B. R. Carlton, M. A. Elmala, R. Bishop, G. Banerjee, R. B. Nicholls, S. K. Ling, N. Dinur, S. S. Taylor, and K. Soumyanath, “A 5-GHz 108-Mb/s 2×2 MIMO transceiver RFIC with fully integrated 20.5-dBm P1dB power amplifiers in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2746–2756, Dec. 2006.
    [17] M. Kumar, Y. Tan, and J. K. O. Sin, “Excellent cross-talk isolation, high-Q inductors, and reduced self-heating in a TFSOI technology for system-on-a-chip applications,” IEEE Trans. Electronic Devices, vol. 49, no. 4, pp. 584–589, Apr. 2002.
    [18] H.-S. Kim, K. A. Jenkins, and Y.-H. Xie, “Effective crosstalk isolation through p+ Si substrate with semi-insulating porous Si,” IEEE Electron. Device Lett., vol. 23, no. 3, pp. 160–162, Mar. 2002.
    [19] R. Raich, H. Qian, and G. T. Zhou, “Orthogonal polynomials for power amplifier modeling and predistorter design,” IEEE Trans. Veh. Technol., vol. 53, no. 5, pp. 1468–1479, Sep. 2004.
    [20] S. Bassam, M. Helaoui, and F. Ghannouchi, “Crossover digital predistorter for the compensation of crosstalk and nonlinearity in MIMO transmitters,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 5, pp. 1119–1128, May. 2009.
    [21] F. Gregorio, J. Cousseau, S. Werner, T. Riihonen, and R. Wichman, “Compensation of IQ Imbalance and Transmitter Nonlinearities in Broadband MIMO-OFDM”, IEEE International Symposium on Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, May 2011.
    [22] R. Zayani, R. Bouallegue, D. Roviras, “ Crossover Neural Network Predistorter for the Compensation of Crosstalk and Nonlinearity in MIMO OFDM Systems”, 2010 IEEE 21st International Symposium on , vol., no., pp.966-970, 26-30 Sept. 2010
    [23] Jian Li and Ilow, J “Adaptive Volterra predistorters for compensation of non-linear effects with memory in OFDM transmitters,” Communication Networks and Services Research Conference Proceedings of the 4th Annual, pp. 4 pp, May 2006.
    [24] Simon Haykin, Adaptive Fikter Theory, 4th edition, 2002 by Prentice-Hall, Inc
    [25] L. Ding, Zhou, G.T., Morgan, D.R., Zhengxiang Ma, Kenney, J.S., Jaehyeong Kim and Giardina, C.R.; “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Transactions on Communications, vol. 52, no. 1,pp.159 – 165, Jan. 2004
    [26] D. Tse and P.Viswanath, Fundamentals of Wireless Communication. Cambridge, U.K.: Cambridge Univ. Press, 2005.
    [27] I. Medvedev, B. A. Bjerke, R. Walton, J. Ketchum, M. Wallace, and S. Howard, “A comparison of MIMO receiver structures for 802.11n WLAN—Performance and complexity,” in 17th Annu. IEEE Int. Pers., Indoor, Mobile Radio Commun. Symp., Sep. 2006, pp. 1–5.

    QR CODE