簡易檢索 / 詳目顯示

研究生: 李子帆
Tzu-Fan Lee
論文名稱: 非侵入式血糖量測系統
A Non-Invasive Glucose Measurement System
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 楊成發
Chang-Fa Yang
邱弘緯
Hung-Wei Chiu
曾昭雄
Chao-Hsiung Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 62
中文關鍵詞: 非侵入式血糖偵測振盪器功率放大器平板天線低雜訊放大器混頻器可编程增益低通濾波器峰值探測器連續漸進式類比數位轉換器可攜帶式裝置應用
外文關鍵詞: non-invasive blood glucose detection, oscillator, power amplifier, patch antenna, low noise amplifier, mixer, programmable-gain LPF, peak detector, successive approximation register analog to digital converter, portable device application
相關次數: 點閱:498下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用台積電 90 nm CMOS製程的非侵入式血糖量測系統。系統由操作在28至30 GHz的發射機、接收機和平板天線組成。藉由毫米波訊號通過不同的血糖濃度的耳垂組織會造成不同的衰減來判斷血糖值高低。仿生組織的成分使用介電係數測量儀器確認其與人體相似度。毫米波訊號 (28~30 GHz) 由發射機生成,訊號經過厚度為5.5毫米且葡萄糖濃度為100和200 mg/dl的仿生耳垂組織後被接收機接收,由接收機分別將不同濃度的訊號轉換為10位數的數位輸出 0011111001 和 0101111000。量測系統包含發射機與接收機的總功耗為156 mW。 PCB的尺寸為36.1×28.3 mm2。考慮到電池轉換效率後(85%),容量為45 mAh的聚合物鋰電池(16×10×4mm3)可使系統運行860秒,如果每天測量8次,每次測量需要1秒,則該系統可以使用約108天。根據2013年版的ISO 15197,血糖在100至200 mg / dl之間的允許誤差為15 mg / dl。該系統可檢測的最低血糖值為0.64 mg / dl,符合ISO 15197的標準。


    A non-invasive glucose measurement system is fabricated using TSMC 90-nm CMOS technology. The measurement system consists of a transmitter, a receiver and patch antennas that works from 28 to 30 GHz. The blood glucose level is determined by the measurement attenuation caused by earlobe tissues of different glucose concentrations. The permittivity of mimicking phantoms is verified by the dielectric probe kit to confirm its similarity to human body. The millimeter wave (MMW) signal is generated by the transmitter. After being passed through the 5-mm earlobe mimicking phantoms with glucose concentrations of 100 and 200mg/dl, the signal is converted by the receiver to the 10-bit digital out-put 0011111001 and 0101111000, respectively. The total power consumption of the measurement system is 156 mW. The size of PCB is 36.1 × 28.3 mm2. The measurement gain of receiver is 26.6 dB at 27.5 GHz. A polymer lithium battery (16×10×4mm3) with a capacity of 45 mAh can let the system operate for 860 seconds after considering the battery conversion efficiency (85%), so that this system can be used for 108 days, if we measure 8 times a day and each measurement takes 1 second. According to the 2013 edition of ISO 15197, the allowable error of the blood glucose range between 100 to 200 mg/dl is 15 mg/dl. The minimum detectable blood glucose level by this system is 0.64 mg / dl, which meets the standard of ISO 15197.

    摘要 III Abstract IV 誌謝 V Table of Contents VI List of Figures VII List of Tables X Chapter 1 : Introduction 1 1.1 Background and Motivation 1 1.2 Organization of Thesis 2 Chapter 2 : Mimicking Phantom 3 Chapter 3 : System Architecture 8 3.1 System Illustration Diagram 8 3.2 System Requirement and Receiver Block Diagram 9 3.3 Receiver Circuit Design 11 3.3.1 Programmable-gain LPF 11 3.3.2 Peak Detector 13 3.3.3 10-bit Successive approximate register analog-to-digital converter (SAR-ADC) 14 3.4 Simulation Results of Receiver 21 3.4.1 Programmable-gain LPF 21 3.4.2 Peak detector 25 3.4.3 10-bit SAR ADC 27 Chapter 4 : Measurement Result 31 4.1 Chip Layout and Microphotograph 31 4.2 Receiver Building Block Measurement Results 34 4.2.1 Programmable-gain LPF 34 4.2.2 Peak Detector 36 4.3 Receiver Measurement Results with NA 38 4.3.1 Measurement Results without phantom 38 4.3.2 Measurement Results with phantom 41 Chapter 5 : Conclusion & Future Work 43 Reference 46

    [1] Moses A, "Illustrating the pivotal role of obesity as a driver of diabetes" in European Congress on Obesity Abstract T3P28. May 23-26, 2018.
    [2] P. H. Siegel, Y. Lee and V. Pikov, "Millimeter-wave non-invasive monitoring of glucose in anesthetized rats," 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Tucson, AZ, 2014.
    [3] F. Wang, "Microwave-based non-invasive blood glucose levels monitoring using flexible UWB antennas," 12th European Conference on Antennas and Propagation (EuCAP 2018), London, 2018, pp. 1-4.
    [4] T. Yilmaz, R. Foster and Y. Hao, "Broadband Tissue Mimicking Phantoms and a Patch Resonator for Evaluating Noninvasive Monitoring of Blood Glucose Levels," in IEEE Transactions on Antennas and Propagation, vol. 62, no. 6, pp. 3064-3075, June 2014.
    [5] D.Andreuccetti, R.Fossi and C.Petrucci: An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz. IFAC-CNR, Florence (Italy), 1997. Based on data published by C.Gabriel et al. in 1996. [Online]. Available: http://niremf.ifac.cnr.it/tissprop/
    [6] Tzu-Fan Lee, Hsiao-Chin Chen and Chien-Wen Chiu, "Millimeter Wave Absorption Spectroscopy for Non-Invasive Glucose Measurement," 2019 International Conference on Biomedical Engineering and Biotechnology (ICBEB), Seoul, Republic of Korea, October 22-25, 2019.
    [7] Ming-Yu Yen, Fang-Yu Zhou, Wen-Ling Chang, and Hsiao-Chin Chen, “MMW Receiver Front-End for Noninvasive Glucose Measurement,” 2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Beitou, Taipei, Dec. 3-6, 2019.
    [8] S. Kumaravel, B. Venkataramani, S. Rishi, V. S. Vijay and B. Shailendra, "An enhanced folded cascode OTA with push pull input stage," International Multi-Conference on Systems, Signals & Devices, Chemnitz, 2012, pp. 1-6.
    [9] Seok-Bae Park, J. E. Wilson and M. Ismail, "The CHIP - Peak Detectors for Multistandard Wireless Receivers," in IEEE Circuits and Devices Magazine, vol. 22, no. 6, pp. 6-9, Nov.-Dec. 2006.
    [10] Hui-Wen Chang, “Adaptive Successive Approximation ADC for Biomedical Acquisition System”, Master's thesis, National Cheng Kung University, July 2011
    [11] C. Liu, S. Chang, G. Huang and Y. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010.

    無法下載圖示 全文公開日期 2025/02/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE