簡易檢索 / 詳目顯示

研究生: 吳宛蓁
Wan-jhen Wu
論文名稱: 還原氧化石墨烯材料應用於染料敏化太陽能電池之研究
Application of Reduced Graphene Oxide Materials for Dye-Sensitized Solar Cells
指導教授: 林舜天
Shun-Tian Lin
口試委員: 吳翼貽
Ye-Ee Wu
胡泉凌
Chuan-Ling Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 87
中文關鍵詞: 染料敏化太陽能電池還原氧化石墨烯二氧化鈦
外文關鍵詞: dye-sensitized solar cells, reduced graphene oxide, titanium dioxide
相關次數: 點閱:390下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米TiO2薄膜的光電極是影響染料敏化太陽能電池光電特性的重要因素。本研究主要改善染料敏化太陽能電池中之工作電極暗電流的產生,所以在TiO2工作電極中添加具有良好導電性之材料,進而增進染料敏化太陽能電池的效率。在製備二氧化鈦漿料過程中分別添加石墨及還原氧化石墨烯兩種良好導電性的材料,使DSSC之短路電流密度(short-circuit current density)增加,進而提升DSSC的光電轉換效率。製備TiO2-Graphite、TiO2-G+rGO和TiO2-rGO漿料,作為染料敏化太陽能電池(DSSC)中之光電極材料。在DSSC光電極的製備上使用旋轉塗佈法塗佈在ITO導電玻璃上。經過太陽能光電轉換效率的測試結果顯示,添加石墨及還原氧化石墨烯粉末可以增加電池短路電流密度(Jsc),塗佈TiO2-Graphite讓DSSC的光電轉換效率從原先之2.248 %最高提升到3.572 %;塗佈TiO2-rGO讓DSSC的光電轉換效率從原先之2.248 %最高提升到6.409 %;塗佈TiO2-G+rGO讓DSSC的光電轉換效率從原先之2.248%最高提升到4.582%。


    The nanocrystalline-TiO2 film is a crucial factor of photoelectrode performances in dye-sensitized solar cells. In this study, we decreased dark current generation in the working electrode of the dye-sensitized solar cells. By adding good conductivity materials into TiO2 working electrode and thereby enhanced the efficiency of solar cells.During the preparation we added graphite and reduced graphene oxide that are well-conductive materials, since graphite and rGO can increase the short-circuit current density of DSSC therefore reduce the dark current generation, thus the light-to-electricity conversion effectively of DSSC can be effectively raised. The DSSC photoelectrodes were prepared by spin coating on ITO substrates. According to light-to-electricity conversion efficiency test, adding TiO2-Graphite, TiO2-Graphite-rGO and TiO2-rGO could increase the values of short-circuit current density (Jsc) obviously, and also improved the light-to-electricity conversion efficiency from 2.248 % to 3.572% by TiO2-Graphite, 6.409% by TiO2-rGO and 4.582% by TiO2-Graphite-rGO.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 第二章 文獻回顧 3 2.1 太陽能電池簡介 3 2.2 染料敏化太陽能電池簡介 9 2.2.1 染料敏化太陽能電池的發展 9 2.2.2 染料敏化太陽能電池的工作原理 11 2.2.3 染料敏化太陽能電池元件組成 15 2.2.4 染料敏化太陽能電池光電轉換評價性能參數 19 2.3 二氧化鈦簡介 21 2.4 石墨及石墨烯簡介 24 2.4.1 石墨(Graphite) 24 2.4.2 石墨烯(Graphene) 24 2.5 研究動機 30 第三章 實驗設備與步驟 32 3.1 實驗流程 32 3.1.1 還原氧化石墨烯製備流程 32 3.1.2 染料敏化太陽能電池的製作 35 3.3 實驗參數設置 38 第四章 結果與討論 42 4.1 還原氧化石墨烯的分析 42 4.1.1 能量散佈分析儀 42 4.1.2 拉曼光譜儀分析 44 4.2 TiO2工作電極分析 46 4.3 二氧化鈦添加石墨/還原氧化石墨烯sol-gel之工作電極分析 50 4.3.1 二氧化鈦添加石墨sol-gel之工作電極分析 50 4.3.2 二氧化鈦添加還原氧化石墨烯sol-gel之工作電極分析 55 4.3.3 二氧化鈦添加石墨-還原氧化石墨烯sol-gel之工作電極分析 61 第五章 結論 67 第六章 參考文獻 68

    1. Outlook, A. E. (2005). Energy Information Administration. United States.
    2. Gratzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338-344.
    3. 林明獻, & 光電科學. (2007). 太陽電池技術入門. 全華圖書.
    4. 濱川圭弘, & 光電科學. (2009). 光電太陽電池設計與應用. 五南圖書.
    5. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical reviews, 110(11), 6595-6663.
    6. Ko, C. J., Lin, Y. K., Chen, F. C., & Chu, C. W. (2007). Modified buffer layers for polymer photovoltaic devices. Applied Physics Letters, 90(6), 063509.
    7. 邱冠迪, (2011). 斜角蒸鍍二氧化鈦薄膜之光學性質與在染料敏化太陽能電池的運用. 材料科學與工程研究所,碩士,國立東華大學,台灣
    8. Gratzel, M. (2006). The advent of mesoscopic injection solar cells. Progress in Photovoltaics: Research and Applications, 14(5), 429-442.
    9. Lee, W. J., Okada, H., Wakahara, A., & Yoshida, A. (2006). Structural and photoelectrochemical characteristics of nanocrystalline ZnO electrode with Eosin-Y. Ceramics international, 32(5), 495-498.
    10. Kakiuchi, K., Hosono, E., & Fujihara, S. (2006). Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719.Journal of Photochemistry and Photobiology A: Chemistry, 179(1), 81-86.
    11. Katoh, R., Furube, A., Yoshihara, T., Hara, K., Fujihashi, G., Takano, S., ... & Tachiya, M. (2004). Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films.The Journal of Physical Chemistry B, 108(15), 4818-4822.
    12. Hurd, F., & Livingston, R. (1940). The Quantum Yields of Some Dye-sensitized Photooxidations. The Journal of Physical Chemistry, 44(7), 865-873.
    13. 張正華, & 光電科學. (2007). 有機與塑膠太陽能電池. 五南. 張正華, & 光電科學. (2007). 有機與塑膠太陽能電池. 五南.
    14. Tsubomura, H., Matsumura, M., Nomura, Y., & Amamiya, T. (1976). Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell.
    15. O’regan, B., & Grfitzeli, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized. nature, 353, 737-740.
    16. Nazeeruddin, M. K., Pechy, P., & Gratzel, M. (1997). Efficient panchromatic sensitization of nanocrystalline TiO 2 films by a black dye based on a trithiocyanato–ruthenium complex. Chemical Communications, (18), 1705-1706.
    17. Gratzel, M. (2004). Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 164(1), 3-14.
    18. Nazeeruddin, M. K., De Angelis, F., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., ... & Gratzel, M. (2005). Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers.Journal of the American Chemical Society, 127(48), 16835-16847.
    19. Chen, C. Y., Wang, M., Li, J. Y., Pootrakulchote, N., Alibabaei, L., Ngoc-le, C. H., ... & Grätzel, M. (2009). Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS nano, 3(10), 3103-3109.
    20. Yella, A., Lee, H. W., Tsao, H. N., Yi, C., Chandiran, A. K., Nazeeruddin, M. K., ... & Gratzel, M. (2011). Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science, 334(6056), 629-634.
    21. Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., & Han, L. (2006). Dye-sensitized solar cells with conversion efficiency of 11.1%. Japanese Journal of Applied Physics, 45(7L), L638.
    22. Kim, J., Kim, J., & Lee, M. (2010). Laser welding of nanoparticulate TiO2 and transparent conducting oxide electrodes for highly efficient dye-sensitized solar cell. Nanotechnology, 21(34), 345203.
    23. Zaban, A., Ferrere, S., & Gregg, B. A. (1998). Relative energetics at the semiconductor/sensitizing dye/electrolyte interface. The Journal of Physical Chemistry B, 102(2), 452-460.
    24. Zaban, A., Meier, A., & Gregg, B. A. (1997). Electric potential distribution and short-range screening in nanoporous TiO2 electrodes. The Journal of Physical Chemistry B, 101(40), 7985-7990.
    25. Barbe, C. J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., & Gratzel, M. (1997). Nanocrystalline titanium oxide electrodes for photovoltaic applications. Journal of the American Ceramic Society, 80(12), 3157-3171.
    26. Hamann, T. W., Jensen, R. A., Martinson, A. B., Van Ryswyk, H., & Hupp, J. T. (2008). Advancing beyond current generation dye-sensitized solar cells.Energy & Environmental Science, 1(1), 66-78.
    27. Pagliaro, M., Palmisano, G., Ciriminna, R., & Loddo, V. (2009). Nanochemistry aspects of titania in dye-sensitized solar cells. Energy & Environmental Science, 2(8), 838-844.
    28. Jose, R., Thavasi, V., & Ramakrishna, S. (2009). Metal Oxides for Dye‐Sensitized Solar Cells. Journal of the American Ceramic Society, 92(2), 289-301.
    29. Matsui, M., Hashimoto, Y., Funabiki, K., Jin, J. Y., Yoshida, T., & Minoura, H. (2005). Application of near-infrared absorbing heptamethine cyanine dyes as sensitizers for zinc oxide solar cell. Synthetic metals, 148(2), 147-153.
    30. Ma, T., Akiyama, M., Abe, E., & Imai, I. (2005). High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode. Nano letters, 5(12), 2543-2547.
    31. Li, Q., Liang, W., & Shang, J. K. (2007). Enhanced visible-light absorption from PdO nanoparticles in nitrogen-doped titanium oxide thin films. Applied physics letters, 90(6), 063109.
    32. Roh, S. J., Mane, R. S., Min, S. K., Lee, W. J., Lokhande, C. D., & Han, S. H. (2006). Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO 2 based dye-sensitized solar cells. Applied Physics Letters,89(25), 253512-253512.
    33. Su, Y. H., Lai, W. H., Teoh, L. G., Hon, M. H., & Huang, J. L. (2007). Layer-by-layer Au nanoparticles as a Schottky barrier in a water-based dye-sensitized solar cell. Applied Physics A, 88(1), 173-178.
    34. Bisquert, J., Zaban, A., & Salvador, P. (2002). Analysis of the mechanisms of electron recombination in nanoporous TiO2 dye-sensitized solar cells. Nonequilibrium steady-state statistics and interfacial electron transfer via surface states. The Journal of Physical Chemistry B, 106(34), 8774-8782.
    35. Kalyanasundaram, K., & Gratzel, M. (1998). Applications of functionalized transition metal complexes in photonic and optoelectronic devices.Coordination chemistry reviews, 177(1), 347-414.
    36. Nazeeruddin, M. K., Humphry-Baker, R., Liska, P., & Gratzel, M. (2003). Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. The Journal of Physical Chemistry B, 107(34), 8981-8987.
    37. Meng, Q. B., Takahashi, K., Zhang, X. T., Sutanto, I., Rao, T. N., Sato, O., ... & Uragami, M. (2003). Fabrication of an efficient solid-state dye-sensitized solar cell. Langmuir, 19(9), 3572-3574.
    38. Park, N. G., Van de Lagemaat, J., & Frank, A. J. (2000). Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. The Journal of Physical Chemistry B, 104(38), 8989-8994.
    39. Zhang, H., & Banfield, J. F. (2000). Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation. Journal of Materials Research, 15(02), 437-448.
    40. Vainshtein, B. K. (Ed.). (1994). Fundamentals of Crystals: Fundamentals of Crystals. Symmetry, and Methods of Structural Crystallography (Vol. 1). Springer.
    41. 簡國明, 洪長春, 吳典熹, 王永銘, & 藍怡平. (2004). 奈米二氧化鈦專利地圖及分析 Titanium Dioxide, 行政院國家科學委員會科學技術資料中心.
    42. Nosaka, Y., & Fox, M. A. (1988). Kinetics for electron transfer from laser-pulse irradiated colloidal semiconductors to adsorbed methylviologen: dependence of the quantum yield on incident pulse width. The Journal of Physical Chemistry,92(7), 1893-1897.
    43. Wallace, P. R. (1947). The band theory of graphite. Physical Review, 71(9), 622.
    44. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696),666-669.
    45. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature materials, 6(3), 183-191.
    46. Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 321(5887), 385-388.
    47. Novoselov, K. S. A., Geim, A. K., Morozov, S., Jiang, D., Grigorieva, M. K. I., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. nature, 438(7065), 197-200.
    48. Wilson, M. (2006). Electrons in atomically thin carbon sheets behave like massless particles. Physics Today, 59(1), 21-23.
    49. Durkop, T., Getty, S. A., Cobas, E., & Fuhrer, M. S. (2004). Extraordinary mobility in semiconducting carbon nanotubes. Nano letters, 4(1), 35-39.
    50. Tung, V. C., Allen, M. J., Yang, Y., & Kaner, R. B. (2008). High-throughput solution processing of large-scale graphene. Nature nanotechnology, 4(1), 25-29.
    51. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., ... & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706-710.
    52. Wang, X., Zhi, L., & Mullen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano letters, 8(1), 323-327.
    53. Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., & Yu, G. (2009). Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties.Nano letters, 9(5), 1752-1758.
    54. Wehling, T. O., Novoselov, K. S., Morozov, S. V., Vdovin, E. E., Katsnelson, M. I., Geim, A. K., & Lichtenstein, A. I. (2008). Molecular doping of graphene.Nano letters, 8(1), 173-177.
    55. Zhang, Y., Small, J. P., Pontius, W. V., & Kim, P. (2005). Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Applied Physics Letters, 86(7), 073104-073104.
    56. De Heer, W. A., Berger, C., Wu, X., First, P. N., Conrad, E. H., Li, X., ... & Martinez, G. (2007). Epitaxial graphene. Solid State Communications, 143(1), 92-100.
    57. Eda, G., Fanchini, G., & Chhowalla, M. (2008). Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material.Nature nanotechnology, 3(5), 270-274.
    58. Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature nanotechnology, 4(4), 217-224.
    59. Wang, H., & Hu, Y. H. (2012). Graphene as a counter electrode material for dye-sensitized solar cells. Energy & Environmental Science, 5(8), 8182-8188.

    無法下載圖示 全文公開日期 2020/02/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE