簡易檢索 / 詳目顯示

研究生: 李亭葦
Ting-Wei Lee
論文名稱: 透過適當的傳輸參數分配在LoRa 中實現吞吐量優化
Throughput Optimization in LoRa by Proper Transmission Parameter Allocation
指導教授: 馮輝文
Huei-Wen Ferng
口試委員: 林嘉慶
Jia-Chin Lin
張宏慶
Hung-Ching Jang
鄭瑞光
Ray-Guang Cheng
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 51
中文關鍵詞: 低功率廣域網路LoRaLoRaWAN傳輸參數配置吞吐量物聯網
外文關鍵詞: LPWAN, LoRa, LoRaWAN, Transmition Parameter Allocation, Throughput, IoT
相關次數: 點閱:225下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著物聯網(Internet of Things, IoT) 逐漸實現,現今物聯網專注於低功率廣域網路(Low-Power Wide-Area Network, LPWAN) 的設計。低功率廣域網路是一種為了因應物聯網裝置省電、長距離傳輸資料的需求所生,且可以用低位元率進行長距離通訊。儘管LoRa 技術本身已經明確,但如何在同一區域眾多終端設備的情況下有效地分配無線資源仍是一開放性的挑戰,於是本論文專注於設計出LoRa 優化傳輸參數組合之演算法。本論文將提出一種演算法,先將終端設備分群,利用傳輸參數的不同組合有不同資料率的特性來做分配比例的依據,藉由此分配比例並配合分群結果來指派傳輸參數組合,以達效能之優化。透過模擬結果可觀察出,本論文所提演算法在眾多終端設備的環境下能較相關文獻之方法有更佳效能之表現。


    As the Internet of things (IoT) is gradually realized, the focus on IoT lies in the design of low-power wide-area networks (LPWANs) nowadays. LPWAN arises for power saving and long-range data transmission in IoT. It enables the long-range communication at a low bitrate. Despite the technology of LoRa is developed maturely, how to allocate radio resources efficiently among many end devices in the wide area is still an open issue. Target at this goal, this paper will propose an algorithm for LoRa to better system performance. First, end devices are clustered. Then, the fact that a different transmission ratio causes a different bitrate serves as the principle of allocation. By using this fact and the results of clustering, the system performance is optimized. Via simulations, we successfully show that our proposed algorithm outperforms the closely related algorithms in the literature in terms of the data extraction rate and throughput when more end devices are involved.

    論文指導教授推薦書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 考試委員審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 第一章、緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 LoRa 概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 物理層. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 物理層訊框格式(調變訊框的格式) . . . . . . . . . . . . . . 4 1.1.3 LoRaWAN 架構. . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.4 LoRaWAN 訊框格式. . . . . . . . . . . . . . . . . . . . . . 6 1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 論文之組織. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 第二章、相關文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 LPWAN 之LoRa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 適應性資料率. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 路徑損耗模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 SN3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 EXPLoRa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5.1 EXPLoRa-SF . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5.2 EXPLoRa-AT . . . . . . . . . . . . . . . . . . . . . . . . . . 13 第三章、所提方法之規劃與設計. . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 問題定義. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 設計概念. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.1 終端節點分群. . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.2 分配終端節點傳輸參數. . . . . . . . . . . . . . . . . . . . . 22 3.3 CABB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 第四章、數值結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1 模擬環境參數設定. . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 模擬程式之流程圖. . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3 所提方法與相關方法之間的比較. . . . . . . . . . . . . . . . . . . . 30 第五章、結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    [1] L. A. T. Committee, “Lorawan 1.1 Specification,” LoRa Alliance, Standard,
    vol. 1, p. 1, 2017.
    [2] M. C. Bor, U. Roedig, T. Voigt, and J. M. Alonso, “Do LoRa low-power widearea
    networks scale?,” in Proc. ACM International Conference on Modeling,
    Analysis and Simulation of Wireless and Mobile Systems, pp. 59–67, 2016.
    [3] A.-A. A. Boulogeorgos, P. D. Diamantoulakis, and G. K. Karagiannidis, “Low
    power wide area networks (LPWANs) for Internet of things (IoT) applications:
    Research challenges and future trends,” arXiv preprint arXiv:1611.07449,
    2016.
    [4] M. Lauridsen, H. Nguyen, B. Vejlgaard, I. Z. Kovács, P. Mogensen, and
    M. Sorensen, “Coverage comparison of GPRS, NB-IoT, LoRa, and SigFox
    in a 7800 km2 area,” in Proc. IEEE Vehicular Technology Conference (VTC
    Spring), pp. 1–5, Nov. 2017.
    [5] A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A study of LoRa: Long
    range & low power networks for the Internet of things,” Sensors, vol. 16, no.
    9, pp. 1466–1483, Oct. 2016.
    [6] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
    (IoT): A vision, architectural elements, and future directions,” Future generation
    computer systems, vol. 29, no. 7, pp. 1645–1660, Sep. 2013.
    [7] R. Boisguene, S.-C. Tseng, C.-W. Huang, and P. Lin, “A survey on NBIoT
    downlink scheduling: Issues and potential solutions,” in Proc. IEEE International
    Wireless Communications and Mobile Computing Conference
    (IWCMC), pp. 547–551, 2017.
    [8] A. Lavric and V. Popa, “Internet of things and LoRa low-power wide-area networks:
    a survey,” in Proc. IEEE International Symposium on Signals, Circuits
    and Systems (ISSCS), pp. 1–5, 2017.
    [9] J. Jalowiczor and M. Voznak, “Proposal and Implementation of Probe for Sigfox
    Technology,” in Proc. International Conference on Advanced Engineering
    Theory and Applications, pp. 420–428, 2018.
    [10] L. Qiao, Z. Zheng, W. Cui, and L. Wang, “A survey on Wi-Fi HaLow technology
    for Internet of things,” in Proc. IEEE Conference on Energy Internet and
    Energy System Integration (EI2), pp. 1–5, 2018.
    [11] T. J. Myers, “Random phase multiple access system with meshing,” Aug. 10
    2010. US Patent 7,773,664.
    [12] J. Petäjäjärvi, K. Mikhaylov, M. Pettissalo, J. Janhunen, and J. Iinatti, “Performance
    of a low-power wide-area network based on LoRa technology:
    Doppler robustness, scalability, and coverage,” International Journal of Distributed
    Sensor Networks, vol. 13, no. 3, pp. 1–16, Mar. 2017.
    [13] F. Cuomo, M. Campo, A. Caponi, G. Bianchi, G. Rossini, and P. Pisani, “Explora:
    Extending the performance of LoRa by suitable spreading factor allocations,”
    in Proc. IEEE Wireless and Mobile Computing, Networking and
    Communications (WiMob), pp. 1–8, Nov. 2017.
    [14] M. C. Bor, J. Vidler, and U. Roedig, “LoRa for the Internet of things,” in Proc.
    EWSN, vol. 16, pp. 361–366, Feb. 2016.
    [15] K. Q. Abdelfadeel, D. Zorbas, V. Cionca, B. O’Flynn, and D. Pesch, “Freefine-
    grained scheduling for reliable and energy efficient data collection in lorawan,”
    arXiv preprint arXiv:1812.05744, 2018.
    [16] O. Georgiou and U. Raza, “Low power wide area network analysis: Can LoRa
    scale?,” IEEE Wireless Communications Letters, vol. 6, no. 2, pp. 162–165,
    Jan. 2017.
    [17] B. Reynders, W. Meert, and S. Pollin, “Power and spreading factor control in
    low power wide area networks,” in Proc. IEEE International Conference on
    Communications (ICC), pp. 1–6, May 2017.
    [18] E. D. Ayele, N. Meratnia, and P. J. Havinga, “Towards a new opportunistic
    IoT network architecture for wildlife monitoring system,” in Proc. IEEE IFIP International
    Conference on New Technologies, Mobility and Security (NTMS),
    pp. 1–5, 2018.
    [19] J. Navarro-Ortiz, S. Sendra, P. Ameigeiras, and J. M. Lopez-Soler, “Integration
    of LoRaWAN and 4G/5G for the Industrial Internet of things,” IEEE
    Communications Magazine, vol. 56, no. 2, pp. 60–67, Feb. 2018.
    [20] R. S. Sinha, Y. Wei, and S.-H. Hwang, “A survey on LPWA technology: LoRa
    and NB-IoT,” ICT Express, vol. 3, no. 1, pp. 14–21, Mar. 2017.
    [21] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study of LPWAN
    technologies for large-scale IoT deployment,” ICT express, vol. 5, no.
    5, pp. 1–7, Mar. 2019.
    [22] V. Hauser and T. Hégr, “Proposal of Adaptive Data Rate Algorithm for
    LoRaWAN-Based Infrastructure,” in Proc. IEEE International Conference on
    Future Internet of Things and Cloud (FiCloud), pp. 85–90, Aug. 2017.
    [23] M. Slabicki, G. Premsankar, and M. Di Francesco, “Adaptive configuration
    of LoRa networks for dense IoT deployments,” in Proc. IEEE/IFIP Network
    Operations and Management Symposium (NOMS), pp. 1–9, Apr. 2018.
    [24] V. Erceg, L. J. Greenstein, S. Y. Tjandra, S. R. Parkoff, A. Gupta, B. Kulic,
    A. A. Julius, and R. Bianchi, “An empirically based path loss model for wireless
    channels in suburban environments,” IEEE Journal on Selected Areas
    in Communications, vol. 17, no. 7, pp. 1205–1211, Jul. 1999.
    [25] M. O. Farooq and D. Pesch, “Poster: Extended LoRaSim to simulate multiple
    IoT applications in a LoRaWAN.,” in Proc. EWSN, pp. 175–176, 2018.
    [26] D. Bankov, E. Khorov, and A. Lyakhov, “Mathematical model of LoRaWAN
    channel access with capture effect,” in Proc. IEEE International Symposium
    on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–5,
    Feb. 2017[27] G. Ferre, “Collision and packet loss analysis in a LoRaWAN network,” in Proc.
    IEEE European Signal Processing Conference (EUSIPCO), pp. 2586–2590,
    Oct. 2017.
    [28] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognition
    Letters, vol. 31, no.8, pp. 651–666, Jun. 2010.
    [29] S. Pilosof, R. Ramjee, D. Raz, Y. Shavitt, and P. Sinha, “Understanding TCP
    fairness over wireless LAN,” in Proc. IEEE INFOCOM, vol. 2, pp. 863–872,
    2003.
    [30] R. Jain, A. Durresi, and G. Babic, “Throughput fairness index: An explanation,”
    in Proc. ATM Forum Contribution, vol. 99, 1999.
    [31] E. L. Hahne, “Round-robin scheduling for max-min fairness in data networks,”
    IEEE Journal on Selected Areas in Communications, vol. 9, no. 7, pp. 1024–
    1039, Sep. 1991.
    [32] T. Voigt, M. Bor, U. Roedig, and J. Alonso, “Mitigating inter-network interference
    in LoRa networks,” arXiv preprint arXiv:1611.00688, Nov. 2016.
    [33] K. Q. Abdelfadeel, V. Cionca, and D. Pesch, “Fair adaptive data rate allocation
    and power control in LoRaWAN,” in Proc. IEEE International Symposium
    on” A World of Wireless, Mobile and Multimedia Networks” (WoWMoM),
    pp. 14–15, Jun. 2018.
    [34] D. Croce, M. Gucciardo, S. Mangione, G. Santaromita, and I. Tinnirello, “Impact
    of LoRa imperfect orthogonality: Analysis of link-level performance,”
    IEEE Communications Letters, vol. 22, no. 4, pp. 796–799, Jan. 2018.
    [35] H.-C. Lee and K.-H. Ke, “Monitoring of large-area IoT sensors using a LoRa
    wireless mesh network system: Design and evaluation,” IEEE Transactions
    on Instrumentation and Measurement, vol. 67, no. 9, pp. 2177–2187, Mar.
    2018.
    [36] R. Sanchez-Iborra and M.-D. Cano, “State of the art in LPWAN solutions for
    industrial IoT services,” Sensors, vol. 16, no. 5, pp. 708–721, Feb. 2016..

    QR CODE