簡易檢索 / 詳目顯示

研究生: 魏子軒
Zi-Hsuan Wei
論文名稱: 以直接施力沈浸邊界法模擬紊流中\\機翼的動態失速現象及電漿控制
Direct-forcing immersed boundary modeling of dynamic stall and plasma control of airfoil in turbulent flow
指導教授: 陳明志
Ming-Jyh CHERN
口試委員: 林怡均
Lin, Yi-Jiun
洪子倫
Tzyy-Leng Horng
王謹誠
Chin-Cheng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 105
中文關鍵詞: 動態失速直接施力沈浸邊界法電漿控制大渦模擬平行計算光線投射演算法
外文關鍵詞: Dynamic stall, Direct-forcing immersed boundary method, Plasma control, Large eddy simulation, Hybrid MPI/OpenMP, Ray-casting algorithm
相關次數: 點閱:182下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機翼是航空飛行器升力的主要來源。失速是一種物理現象,由於飛行過程中較大的AOA(攻角)超過了臨界值,升力突然下降。 主要原因是機翼上方邊界層流的早期分離,導致分離流中產生渦流,這是大部分上翼表面的原因。 動態失速也是由於AOA週期性變化而導致機翼突然升力下降的情況。

    由於這是一個流固耦合問題,因此本研究旨在使用直接施力型沉浸邊界(DFIB)方法建立內部數值模型來模擬動態失速。直接施力型沉浸邊界DFIB法的主要原理是在動量方程中添加虛擬力,以計算固體在流體上的合力。不需要使網格變形即可適合複雜的實體邊界。射線投射算法用於以DFIB方法識別機翼的幾何形狀。因為此問題處於一個紊流的條件下,該模型採用大渦模擬(LES)進行湍流計算。在平行計算方面,混合MPI/OpenMP用作已建立DFIB方法的平行計算算法,以提高計算效率。另一個值得探討的問題是在動態失速情況下控制翼型上的氣流。電漿控制用於防止動態失速。除此之外,提出並解釋了在DBD電漿制動器、拍打翼型以及湍流的影響下邊界層流的變化以及中渦旋對的演化。


    An airfoil is the main source of lift in aeronautical vehicles. Stall is a physical phenomenon in which lift suddenly drops due to a large AOA (angle of attack) exceeding the critical value during flight. The main reason is the early separation of the boundary layer flow above the airfoil, resulting in vortices in the separated flow, which account for most of the upper airfoil surface. Dynamic stall is also a situation that the airfoil experiences a sudden lift drop as the AOA changes periodically.

    Since it is a fluid-structure interaction problem, this study aims to use the Direct-Forcing Immersed Boundary (DFIB) method to establish the in-house numerical model for simulations of dynamic stall. The main principle of DFIB methods is to add a virtual force in the momentum equation for calculations of the resultant force of solid on fluid. It does not need to distort a grid to fit a complex solid boundary. A ray casting algorithm is used to identify the geometry of the airfoil in the DFIB method. Large eddy simulation (LES) is adopted for calculation of turbulence in the proposed model. The hybrid MPI/OpenMP structure is used as the parallel computing algorithm to improve the computing efficiency. Another worth-exploring point is control of airflow over the airfoil under dynamic stall. Plasma control is used to prevent dynamic stall. Additionally, the changes of boundary layer and the evolution of vortices flow under the influence of DBD actuator, turbulent flow and flapping airfoil are presented and explained in this study.

    CONTENTS Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Nomenclatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1 INTRODUCTION 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Dynamic stall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Direct forcing immersed boundary method . . . . . . . . . . . . . . . . 6 · 1 · 1.3 Research synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Problem formulation . . . . . . . . . . . .. . . . . . . . . . . . . . . . 8 2 MATHEMATICAL FORMULAE AND NUMERICAL MODEL 9 2.1 LES governing equations . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Ray-casting algorithm . . . . . . . . . . . . . . .. . . . . . . . . . . . 16 2.4 Airfoil profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 Pitching airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6 DBD actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.7 Hybrid Parallel Programming . . . . . . . . . . . . . . . . . . . . . . . 20 2.8 Computational environments . . . . . . . . . . . . . . . . . . . . . . . 21 3 RESULTS AND DISCUSSION 23 3.1 Grid independence and validation . . . . . . . . . . . . . . . . . . . . 24 3.1.1 Grid independence . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.2 Flow past a stationary airfoil (Case 1 & 2) . . . . . . . . . . . . . . 25 3.1.3 Case 3 : flow over flat plate with DBD actuator . . . . . . . . . . . 27 · 2 · 3.1.4 Case 4 : Flow past stationary airfoil with DBD actuator . . . . . . 28 3.2 Dynamic stall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.1 Voltage effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.2 Frequency effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.3 Analysis of effect of DBD actuator . . . . . . . . . . . . . . . . . . 32 4 CONCLUSIONS AND FUTURE WORK 35 4.1 Conclusions . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 35 4.2 Future work . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 37 Bibliography 38 A NACA 4 digit airfoil generator 73 B y + wall distance estimation 77 CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    [1] L.W. Carr. 1988 Progress in analysis and prediction of dynamic stall. Journal of
    Aircraft, 25, 6-17.
    [2] T. C. Corke, F. O. Thomas. 2015 Dynamic stall in pitching airfoils: aerodynamic
    damping and compressibility effects. Annual Review of Fluid Mechanics 47, 479–505.
    [3] S. Ko, W. McCroskey. 1997 Computations of unsteady separating flows over an oscillating airfoil. AIAA, 35, 1235-1238.
    [4] J.M. Martin, R.W. Empey, W.J. McCroskey, F.X. Caradonna. 1974 An experimental
    analysis of dynamic stall on an oscillating airfoil. Journal of the American Helicopter
    Society, 19, 26-32.
    [5] W. McCroskey. 1981 The phenomenon of dynamic stall. Technical Report TM-81264,
    NASA, USA.
    [6] W. McCroskey. 1982 Unsteady airfoils. Annual Review of Fluid Mechanics, 14, 285-
    311.
    [7] T. S. R. Reddy, K. R. V. Kaza. 1989 Analysis of an unswept propfan blade with a
    semiempirical dynamic stall model, National Aeronautics and Space Administration,
    Scientific and Technical Information Division, Washington, DC, US, 1-20.
    [8] T. Lee, P. Gerontakos. 2004 Investigation of flow over an oscillating airfoil. Journal
    of Fluid Mechanics, 512, 313-341.
    [9] K. Ohmi, M. Coutanceau, T. Phuoc Loc, A. Dulieu. 1991 Further experiments on
    vortex formation around an oscillating and translating airfoil at large incidences.
    Journal of Fluid Mechanics, 225, 607-630.
    [10] M. Raffel, J. Kompenhans, P. Wernet. 1995 Investigation of the unsteady flow velocity
    field above an airfoil pitching under deep dynamic stall conditions. Experiments in Fluids, 19, 103-111.
    [11] H. Sadeghi, M. Mani. 2009 Measurements of the flow field behind a helicopter blade
    using the hot-wire anemometry. Journal of Information Communication Technology,
    2, 32-39.
    [12] M.H. Akbari, S.J. Price. 2003 Simulation of dynamic stall for a NACA 0012 airfoil
    using a vortex method. Journal of Fluids and Structures, 17, 855-874.
    [13] G. Barakos, D. Drikakis. 2003 Computational study of unsteady turbulent flows
    around oscillating and ramping airfoil. International Journal for Numerical Methods
    in Fluids, 42, 163-186.
    [14] C. Mellen, J. Frohlich, W. Rodi. 2003 Lessons from LESFOIL project on large eddy
    simulation of flow around an airfoil. AIAA, 41, 573-581.
    [15] W. Sheng, R. Galbraith, F. Coton. 2008 A modified dynamic stall model for low
    Mach numbers. ASME Journal of Solar Energy Engineering, 130, 310-313.
    [16] S. Wang, L. Ma, D. Ingham, M. Pourkashanian, Z. Tao. 2010 Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils.
    Computers & Fluids, 39, 1529-1541.
    [17] M. Gad-El-Hak. 2000 Flow Control. Cambridge University Press, Cambridge, UK.
    [18] J. R. Roth, D. M. Sherman. 1998 Boundary layer flow control with a one atmosphere
    uniform glow discharge surface plasma. Proceedings of AIAA 36th Aerospace Sciences
    Meeting and Exhibit, Reno, NV, USA.
    [19] W. Shyy, B. Jayaraman, A. Andersson. 2002 Modeling of glow discharge-induced
    fluid dynamics. Journal of Applied Physics, 92, 6434-6443.
    [20] Y. C. Cho, W. Shyy. 2011 Adaptive flow control of low-Reynolds number aerodynamics using dielectric barrier discharge actuator. Progress in Aerospace Sciences,
    47, 495-521.
    [21] P. Gerontakos and T. Lee. 2006 Dynamic Stall Flow Control via a Trailing-Edge
    Flap. AIAA JOURNAL, 44, 469-480.
    [22] B. Heine, K. Mulleners, G. Joubert, M. Raffel. 2011 Dynamic stall control by passive disturbance generators. 29th AIAA Applied Aerodynamics Conference, Honolulu,
    Hawaii, 1-14.
    [23] E. A. Fadlun, R. Verzicco, P. Orlandi and J. Mohd-Yusof. 2000 Combined immersedboundary finite-difference method for three dimensional complex flow simulations,
    Journal of Computational Physics, 161, 35-60.
    [24] M. J. Chern, E. A. Odhiambo, A. G. L. Borthwick, T. L. Horng. 2016 Numerical
    simulation of vibration of horizontal cylinder induced by progressive waves. Fluid
    Dynamics Research, 48, 015508.
    [25] M. J. Chern, W. C. Hsu and T. L. Horng. 2012 Numerical prediction of hydrodynamic
    loading on circular cylinder array in oscillatory flow using direct-forcing immersed
    boundary method, Journal of Applied Mathematics, Article ID 505916.
    [26] M. J. Chern, Y. H. Kuan, G. Nugroho, G. T. Lu and T. L. Horng. 2014 Direct-forcing
    immersed boundary modeling of vortex-induced vibration of a circular cylinder, Journal of Wind Engineering & Industrial Aerodynamics, 134, 109-121.
    [27] J. Smagorinsky. 1963 General Circulation Experiments With The Primitive Equations. Monthly Weather Review, 91, 99-164.
    [28] A. Uzun, G. A. Blaisdell, A. S. Lyrintzis. 2003 Sensitivity to the Smagorinsky Constant in Turbulent Jet Simulations. AIAA Journal, 41, 2077-2079.
    [29] G. W. Zou, H. P. Tan, W. K. Chow, Y. Gao. 2007 Effects of varying Smagorinsky
    constant on simulating post-flashover fires. International Journal of Computational
    Fluid Dynamics, 21, 107-119.
    [30] Z. Yang. 2015 Large-eddy simulation: Past, present and the future. Chinese Journal
    of Aeronautics, 28, 11-24.
    [31] D. K. Lilly. 1967 The Representation of Small-scale Turbulence in Numerical Simulation Experiment. Proceedings of the IBM Scientific Computing Symposium on
    Environmental Sciences., 2, 195-210.
    [32] S. M. Salim, S.C. Cheah. 2009 Wall y
    + Strategy for Dealing with Wall-bounded
    Turbulent Flows. Lecture Notes in Engineering and Computer Science. 2175
    [33] A. J. Chorin. 1967 A numerical method for solving incompressible viscous flow problems. Journal of Computational Physics, 2, 12-26.
    [34] B.P. Leonard. 1979 A stable and accurate convective modelling procedure based
    on quadratic upstream interpolation. Computer Methods in Applied Mechanics and
    Engineering, 19, 59–98.
    [35] D. M. Young. 1954 Iterative methods for solving partial difference equations of elliptical type. Transactions of the American Mathematical Society, 76, 92-111.
    [36] I. H. Abbott, A.E.V. Doenhoff. Theory of Wing Sections, Dover, N Y, USA, 1-30.
    [37] I. Sutherland, R.F. Sproull and R.A. Schumacker. 1974 A characterization of ten
    hidden-surface algorithms, ACM Computing Surveys, 6, 1-55.
    [38] C. L. Ladson. Computer program to obtain ordinates for NACA airfoils. Technical
    report TM-4741, National Aeronautics and Space Administration, Langley Research
    Center, Virginia, USA.
    [39] N. Vaziri, M. J. Chern, T. L. Horng, S. Syamsuri. 2019 Simulation of dielectric barrier
    discharge actuator at low Reynolds number AEAT, 92, 571–578.
    [40] P. S. Pacheco. 2011 An Introduction To Parallel Programming, Chapter 1, Morgan
    Kaufmann, Amsterdam, Netherlands.
    [41] P.D. Mininni, D. Rosenberg, R. Reddy, A. Pouquet. 2011 A hybrid MPI–OpenMP
    scheme for scalable parallel pseudospectral computations for fluid turbulence. Parallel
    Computing, 37, 316-326
    [42] K. Nakajima. 2009 Flat MPI vs. Hybrid: Evaluation of Parallel Programming Models
    for Preconditioned Iterative Solvers on “T2K Open Supercomputer. International
    Conference on Parallel Processing Workshops, Vienna, 73-80.
    [43] L.E. Jones, R.D. Sandberg and N.D. Sandham. 2008 Direct numerical simulations of
    forced and unforced separation bubbles on an airfoil at incidence. Journal of Fluid
    Mechanics, 602, 175-207, UK.
    [44] T. Ohtake, Y. Nakae and T. Motohashi. 2007 Nonlinearity of the aerodynamic characteristics of NACA0012 aerofoil at low Reynolds numbers. Journal of the Japan
    Society for Aeronautical and Space Sciences, 55, 439-445.
    [45] H. Akbiyik, H. Yavuz and Y.E. Akansu. 2019 Aerodynamic and energy-efficiencybased assessment of plasma actuator’s position on a NACA0015 airfoil. Contributions
    to Plasma Physics, 60, e201900009.
    [46] G. Neretti. 2016 Recent Progress Some Aircraft Technologies, Chapter 3, InTech,
    London, UK, 57-76.
    [47] H. Schlichting. 1979 Boundary Layer Theory, 7th edition, ISBN 0-07-055334-3,
    McGraw-Hill, NY, 640-643.

    無法下載圖示 全文公開日期 2025/07/27 (校內網路)
    全文公開日期 2025/07/27 (校外網路)
    全文公開日期 2025/07/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE