簡易檢索 / 詳目顯示

研究生: 喬凱杰
Kai-chieh Chiao
論文名稱: 探討輻狀基底函數類神經網路與微分再生核法之模擬行為
Compare the Behavior of Radial Basis Function Neural Network and Differential Reproducing kernel Approximation Method
指導教授: 潘誠平
Chan-Ping Pan
口試委員: 林昌佑
Chang-yu Lin
蔡幸致
Shing-chih Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 72
中文關鍵詞: 微分再生核法再生核近似法輻狀基底函數
外文關鍵詞: Differential Reproducing kernel Approximation Me, Radial Basis Function(RBF), Reproducing kernel Approximation Method
相關次數: 點閱:220下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要說明輻狀基底函數(RBF)類神經網路以及微分再生核法(DRKM)之理論基礎,以比較兩者模擬方法上的差異。輻狀基底函數類神經網路主要是以中心點之選取求得標準差,以決定影響寬度來控制整個網路的運算,其模擬方式有二,分別為:1.隨機選取中心點:以控制中心點數目進行分析。2.以垂直最小平方法選取中心點:以指定誤差容忍度進行模擬。而微分再生核法主要是以影響半徑的選取來控制其模擬之準確度。本文並藉以例題討論模擬之準確性以及適用的問題,以作為日後模擬實際問題之參考。
      其結果顯示RBF隨機選取之中心點數目越多,其內插近似的效果越好,在中心點數目超過一定之比例時,準確度以可超越DRKM之模擬結果;而RBF以垂直最小平方法選取中心點雖然能控制中心點的選取,但計算效率受資料點數目之影響甚大,對於較複雜之問題往往過於耗時。


    This study mainly examines the theory of Radial Basis Function (RBF) and Differential Reproducing kernel Approximation Method (DRKM), and compares the differences between them. The entire network calculation of RBF is controlled by the central points. There are two techniques to simulate the procedure: First, select the central point set randomly: to carry out the analysis by controlling the number of central points. Second, select the central points by Orthogonal Least Squares: to carry out the analysis by allocating the tolerance of errors. DKSM controls its accuracy by influencing the selection of radius. This study provides some examples to discuss the accuracy and suitability of this procedure in order to provide references for further studies.
    The results reveal that the approximate interpolation outcomes getting better if the RBF numbers of random selection of central points increase. When the numbers of central points go beyond specific percentage, its accuracy can surpass the result of DRKM. Although in the RBF we can control the selection of central points by the Orthogonal Least Squares, the efficiency of calculation is greatly affected by the amount of data. Therefore, it is time-consuming for complicated cases.

    論文摘要I 英文摘要II 誌謝III 目錄IV 圖表索引VI 第一章 緒論1 1.1 前言1 1.2 研究動機與目的2 1.3 文獻回顧3 1.3.1 DRKM之發展背景3 1.3.2 RBF類神經網路之發展背景4 1.4 本文架構5 第二章 輻狀基底函數類神經網路6 2.1 前言6 2.2 RBF網路架構6 2.3 RBF中心點之選取10 2.3.1 隨機選取法11 2.3.2 垂直最小平方法12 2.4 RBF權重向量之探討17 2.4.1 以最小平方法推導權重向量17 2.5 RBF網路輸出值20 2.6 RBF計算流程21 2.6.1 隨機選取中心點之RBFNN計算流程21 2.6.2 垂直最小平方法選取中心點之RBFNN計算流程22 第三章 微分再生核近似法之理論基礎23 3.1 前言23 3.2 推導再生條件24 3.3 連續再生核近似位移函數之建立26 3.4 離散再生核近似函數之建立27 3.4.1 一維離散再生核近似27 3.4.2 二維離散再生核近似29 3.5 高階導數再生核形狀函數之推導32 3.6 權重函數之探討34 3.7 計算流程36 第四章 探討RBFNN與DRKM之模擬結果37 4.1 理論基礎之比較37 4.2 DRKM權函數之探討與修正41 4.2.1 修正權函數41 4.2.2 例題驗證與討論43 4.3 例題分析結果比較48 4.3.1 模擬一維問題之探討48 4.3.2 模擬二維問題之探討59 第五章 結論與建議66 5.1 結論66 5.2 建議69 參考文獻70

    【1】Lucy,L.B. , “A numerical approach to the testing of the fission hypothesis.”TheAstron.J.8(12),1013-1024(1977)
    【2】Nayroles, B.,Touzot, G .and P .Villon , “Generalizing the finite element method: Diffuse Approximation and Diffuse Element”,Comput.Mech.10,307-318(1992).
    【3】Belytschko, T. Gu, L and L .u, Y .Y. ,“Fracture and crack growth by element-free Galerkin methods” ,Model. Simul. Mater. Sci. Engrg.2, 519-534(1994).
    【4】Liu, W .K. Jun,S. and Zhang ,Y.F., “Reproducing kernel particle methods” ,Int. J. Numer. Methods in Fluids.20, 1081-1106(1994).
    【5】Chen, J .S. Wu,C.T. and Liu W.K., “Reproducing kernel particle methods for Large Deformation Analysis of non-linear structures” ,Computer Methods in Applied Mechanics And Engineering.139,195-227.(1996).
    【6】陳禎康,「微分再生核近似法於二維彈力之應用」,碩士論文,國立成功大學土木工程研究所,台南(2002).
    【7】蘇俊銘,「微分再生核法之工程應用」,碩士論文,國立台灣科技大學營建工程研究所,台北(2006).
    【8】黃家祥,「微分再生核法於雙向彎曲柱設計之運用」,碩士論文,國立台灣科技大學營建工程研究所,台北,(2007).
    【9】Warren S. McCulloch and Walter Pitts, “A logical calculus of the ideas immanent in nervous activity.” in the Bulletin of Mathematical Biophysics 5:115-133.(1943).
    【10】Rosenblatt, F. “The Perception: a probabilistic model for information storage & organization in the brain.” In the Psychological Review: 65 pp. 386-408.(1958).
    【11】J. J. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Computational Abilities.” Proceedings of the National Academy of Sciences of the United States of America, Vol. 79, No. 8, pp. 2554-2558 .(1982).
    【12】R.L. Hardy, “Multiquadric equations of topography and other irregular surfaces.” J Geophys Res 76, pp. 1905–1915. (1971).
    【13】Powell M.J.D. “Radial Basis Functions for Multivariate Interpolation: A Review. ”In Mason J.C. and Cox M.G. (eds) "Algorithms for Approximation ", Clarendon Press, Oxford, pp. 143-167.(1987).
    【14】Broomhead, D. S. and Lowe, David , “Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks.”(1988).
    【15】John Moody and Christian J. Darken, “Fast Learning in Networks of Locally-Tuned Processing Units.”(1989)
    【16】S .Haykin, “A Comprehensive Foundation, Prentice Hall, Englewood Cliffs.”, NJ (1999).
    【17】Chen S. “Orthogonal least squares learning algorithm for radial basis function networks [J].” IEEE Trans on NN,2(2) : 302- 309.(1991).
    【18】吳伯壽,「元素釋放法之層狀邊界處理」,碩士論文,國立中央大學土木工程研究所,中壢,(2000).
    【19】張斐章,張麗秋,黃浩倫 :類神經網路:理論與實務,東華書局, (2003).
    【20】張麗秋、林永堂、張斐章 :結合OLS與SGA建構輻狀基底類神經網路於洪水預測之研究,台灣水利Vol.53,No.4,(2005).

    QR CODE