簡易檢索 / 詳目顯示

研究生: 許哲綱
Che-Kang Hsu
論文名稱: 多層複合濾料水質淨化系統對水中磷酸鹽的去除機制及使用年限之研究
A Study on the Mechanism of Phosphorus Removal and the Service Life of Multi-Soil-Layering System
指導教授: 何嘉浚
Chia-Chun Ho
口試委員: 陳起鳳
Chi-Feng Chen
林逸彬
Yi-Pin Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 87
中文關鍵詞: 多層複合濾料水質淨化系統臺灣紅土混合濾料包滲透係數正磷酸鹽使用年限
外文關鍵詞: Multi-Soil-Layering System, Red Soil, Soil Mixture Layer, Permeability Coefficient, Orthophosphate, Survice Life
相關次數: 點閱:238下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

多層複合濾料水質淨化系統(Multi-Soil-Layering System,MSL)為日本於 1990 年開發的現地處理設施,達至處理水質污染之效益。臺灣日前引進 MSL 技術已廣泛運用於許多地區,能針對各地區生活污水進行污染物等削減,進而保護排放至河川或水庫的水質。MSL 系統的使用年限在過去研究中較少討論,而污染物中正磷酸鹽的削減反應物會 存留於系統內,對於 MSL 系統之使用年限有較大關聯性,因此本論文針對系統中磷酸鹽的削減機制進行討論。本研究以不同材料填裝系統中的混合濾料包,探究標準配比(砂土:鐵粒:碳粒:稻殼 = 15:2:2:1)濾料包中的鐵粒與鐵粒以外其他材料對於磷酸鹽的去除百分比,並加入臺灣地區具有含鐵量較高的現地紅土置換濾料包中的砂土進行比較。 由實驗結果顯示,單個標準配比濾料包對於正磷酸鹽的削減率約為 21%,純鐵粒對於正磷酸鹽的削減率約為 16%,而鐵粒以外其他材料的削減率約為6%。而單個紅土配比濾料包對於正磷酸鹽的削減率約為 32%,顯示利用含鐵量高的紅土置換砂土有助於提升濾料包對於磷酸鹽的削減,並歸納出以削減率估算濾料包對於正磷酸鹽固定之削減總量,若以使用年限時提出以削減總量推估,需考量背景污染的濃度、目標削減率及現地處理的流量進行估算更完整。


Multi-Soil-Layering System (MSL) is a on-site treatment facility developed in Japan in 1990 for effectively addressing water quality pollution. Taiwan has recently introduced the MSL technology, which has been widely applied in various regions to reduce pollutants in domestic sewage, thereby safeguarding the water quality before its discharge into rivers or reservoirs. The lifespan of MSL systems has received limited attention in past research, and the retention of phosphate-reducing reactants within the system, especially the reduction of orthophosphate, is closely related to the system's longevity. Therefore, this paper focuses on discussing the mechanism of phosphate reduction within the MSL system. This study examines Soil Mixture Block (SMB) within different material-filled systems, investigating the removal percentage of phosphates by iron particles and other materials beside iron particles in the standard mix ratio (sand: iron particles: carbon particles: rice husks = 15:2:2:1) filter media pack. A comparison is made with the addition of locally abundant iron-rich red soil to replace sand in the SMB, in the context of the Taiwan region. Experimental results reveal that the removal percentage of orthophosphates is approximately 21% for a single standard SMB,around 16% for pure iron particles, and about 6% for other materials besides iron particles. In contrast, a single red soil ratio SMB achieves a removal percentage of about 32%, demonstrating that using iron-rich red soil instead of sand enhances the reduction of phosphates. The experiment also estimates the total reduction amount of orthophosphates fixed by the SMB, and proposes a method to estimate the lifespan by considering the total reduction amount, taking into account background pollution concentrations, target reduction rates, and on-site treatment flow rates for a more accurate estimation.

摘要 I ABSTRACT II 誌謝 I 目錄 II 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1 研究目的與動機 1 1.2 研究方法與架構 3 1.3 研究架構 4 第二章 文獻回顧 5 2.1 多層複合濾料水質淨化系統(Multi Soil Layering system , MSL) 5 2.1.1多層複合濾料水質過濾系統(MSL)之淨化機制 6 2.1.2多層複合濾料水質過濾系統(MSL)相關案例 10 2.2 臺灣紅土土壤成分與特性 13 2.3 土壤中鐵的應用性與磷酸根之關係 15 2.4 影響土壤中磷吸附之因素 18 2.4.1時間 18 2.4.2 pH值 18 2.4.3 有機物質 19 2.5 人工合成污水 20 2.5.1正磷酸鹽 20 第三章 實驗方法與設備 21 3.1 研究方法 21 3.2 實驗材料與供水設備介紹 22 3.2.1 實驗材料 22 3.2.2 紅土濾料包配比篩選實驗 25 3.2.3 實驗設備組裝 38 3.2.4 實驗供水設備 40 3.3 相關土壤試驗 41 3.3.1 土壤基本性質試驗 41 3.3.2土壤滲透試驗 41 3.3.3土壤磷吸附試驗 42 3.4 水質取樣與水質試驗內容 45 3.4.1 配置污水濃度 45 3.4.2水質保存與試驗內容 46 3.4.3試驗藥劑與設備 46 3.5 鐵與磷酸根反應方程式 48 3.5.1二價鐵(Fe2+) 48 3.5.2三價鐵(Fe3+) 48 3.6 實驗步驟 49 3.6.1實驗步驟流程圖 49 3.6.2配置污水 50 3.6.3不同實驗組之比較削減成效 50 第四章 實驗結果與分析 51 4.1 鐵粒與磷酸鹽削減之關係 51 4.1.1 石英砂實驗組 51 4.1.2 石英砂與鐵粒實驗組 52 4.1.3 標準配比SMB實驗組 55 4.1.4 綜合比較 57 4.2 鐵粒混合紅土對磷酸鹽的去除成效 58 4.2.1 紅土配比SMB組 58 4.2.2 綜合比較 60 4.3 濾料包使用年限估算 61 4.3.1 標準配比濾料包正磷酸鹽總削減量計算 61 4.3.2 紅土配比濾料包正磷酸鹽總削減量計算 64 4.3.3 濾料包使用年限估算 68 4.3.4 系統案例模擬計算 68 第五章 結論與建議 71 5.1 結論 71 5.2 建議 72 參考文獻 73

1. 王永,徐仁扣. (2011) .可變電荷土壤對水體中磷酸根的吸附去除作用. 生態與農村環境學報, 24(4), 63-67.
2. 何嘉浚,「地工合成材料於多層複合濾料過濾系統之應用」,行政院國家科學委員會100年度精簡報告,2012。
3. 李翰林 (2021)。多層複合濾料水質淨化系統施工規範研擬之研究。碩士論文。國立臺灣科技大學,臺北市。
4. 黃文樹 (2003)。八卦台地南部階地地形與土壤化育之研究。碩士論文。國立彰化師範大學地理學系,彰化市。
5. 曹崇銘, 陳岳民, 江凱楹, & 王明光. (2010). 台灣北部桃園台地紅壤的黏土礦物特性. 土壤與環境, 13(1&2), 43-57.
6. 謝兆申、王明果 (1989),台灣土壤,中興大學土壤調查試驗中心,台灣台中。
7. Asomaning, S. K. (2020). Processes and factors affecting phosphorus sorption in soils. Sorption in 2020s, 45, 1-16.
8. Birkeland, P. W. (1990). Soil-geomorphic research—a selective overview. Geomorphology, 3(3-4), 207-224.
9. Borggaard, O. K. (1986). Iron oxides in relation to phosphate adsorption by soils. Acta Agriculturae Scandinavica, 36(1), 107-118.
10. Dai, L., & Pan, G. (2014). The effects of red soil in removing phosphorus from water column and reducing phosphorus release from sediment in Lake Taihu. Water Science and Technology, 69(5), 1052-1058.
11. Edzwald, J. K., Toensing, D. C., & Leung, M. C. Y. (1976). Phosphate adsorption reactions with clay minerals. Environmental Science & Technology, 10(5), 485-490

12. Gérard, F. (2016). Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils—A myth revisited. Geoderma, 262, 213-226.

13. Luanmanee, S., Attanandana, T., Masunaga, T., & Wakatsuki, T. (2001). The efficiency of a multi-soil-layering system on domestic wastewater treatment during the ninth and tenth years of operation. Ecological Engineering, 18(2), 185-199.

14. Lucke, T., & Nichols, P. W. (2015). The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation. Science of the Total Environment, 536, 784-792.
15. Merritts, D. J., Chadwick, O. A., & Hendricks, D. M. (1991). Rates and processes of soil evolution on uplifted marine terraces, northern California. Geoderma, 51(1-4), 241-275.
16. Nwoke, O. C., Vanlauwe, B., Diels, J., Sanginga, N., Osonubi, O., & Merckx, R. (2003). Assessment of labile phosphorus fractions and adsorption characteristics in relation to soil properties of West African savanna soils. Agriculture, Ecosystems & Environment, 100(2-3), 285-294.
17. Sato, K., Iha, Y., Luanmanee, S., Masunaga, T., & Wakatsuki, T. (2002, August). Long term on-site experiments and mass balances in waste water treatment by multi-soil-layering system. In Proc. of the 17th World Congress of Soil Science, Symposium(Vol. 55, pp. 14-21).
18. Schellmann, W. (1981) Considerations on the definition and classification of laterites. In Proceedings of the International Seminar on Lateritisation Processes, Trivandrum, India, pp. 1-10. A. A. Balkema, Rotterdam.

19. Schellmann, W. (1983). A new definition of laterite. Natural Resources and Development, 18, 7-21.
20. Sivarajasingham, S., Alexander, L. T., Cady, J. G. and Cline, M. G. (1962) Laterite. Advances in Agronomy 14, 1-60, Academic Press, New York.
21. Wang, S., Lin, X., Yu, H., Wang, Z., Xia, H., An, J., & Fan, G. (2017). Nitrogen removal from urban stormwater runoff by stepped bioretention systems. Ecological Engineering, 106, 340-348.
22. Wakatsuki, T., Esumi, H., & Omura, S. (1993). High performance and N & P-removable on-site domestic waste water treatment system by multi-soil-layering method. Water Science and Technology, 27(1), 31-40.

無法下載圖示 全文公開日期 2025/08/29 (校內網路)
全文公開日期 2025/08/29 (校外網路)
全文公開日期 2025/08/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE