簡易檢索 / 詳目顯示

研究生: 黃律凱
Lu-kai Huang
論文名稱: 不同比表面積奈米二氧化矽補強新穎超高分子量聚乙烯複合纖維超高延伸性質之研究
Ultradrawing and Ultimate Tenacity Properties of Novel Ultra-high Molecular Weight Polyethylene Composite Fibers Filled with Nanosilica Particles with varying specific surface areas
指導教授: 葉正濤
Jen-taut Yeh
口試委員: 邱士軒
Shih-hsuan Chiu
陳幹男
Kan-nan Chen
黃繼遠
Chi-yuan Huang
王權泉
Chyuan-chyuan Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 67
中文關鍵詞: 凝膠紡絲奈米二氧化矽超高分子量聚乙烯比表面積
外文關鍵詞: gel spinning, nanosilica, Ultra-high Molecular Weight Polyethylene, surface areas
相關次數: 點閱:427下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要針對比表面積 ≧ 600 m2/g的奈米二氧化矽 (nanosilica) 及改質奈米二氧化矽(modified nanosilica) 含量對超高分子量聚乙烯 (ultrahigh molecular polyetheylenes, (UHMWPE)/nanosilica (F100Sy)及UHMWPE/ modified nanosilica (F100Smx-y) 初絲樣品的可延伸及抗張性質影響作一有系統性探討。研究發現,純nanosilica樣品的比表面積數值已高達601.7 m2/g;當PE-g-MAH /nanosilica 的質量比達到最適化值9時,modified nanosilica的比表面積達到最大值630.7 m2/g。從熱學性質分析發現,F100Smx-y 初絲系列樣品的熔點(Tm)、晶板厚度(lc)和結晶度(Xc) 均分別明顯低、小及高於對應具相同nanosilica含量F100Sy 初絲系列樣品的Tm、lc和Xc數值。而且,當PE-g-MAH /nanosilica的質量比達到一最適化值9時,F100Sm4-y 初絲系列樣品的Tm、lc和Xc數值分別達到最小和最大值。 值得注意的是,F100Sy和F100Smx-y纖維系列樣品的可延伸比(Dra)數值隨其內nanosilica或modified nanosilica含量分別達0.0625 及 0.0375 phr 數值時,對應的Dra數值均達到最大值。上述經添加最適化0.0375 phr modified nanosilica之F100Smx-0.0375纖維系列樣品所得之最大Dra數值,進一步隨其內PE-g-MAH/nanosilica 質量比達最適化值9時,又達另一最大值360.8。 抗張性能研究進一步表明,當加入最適化的nanosilica 或modified nanosilica,延伸後的纖維樣品F100Sy和F100Smx-y 都能獲得優異的抗張性質。 為瞭解上述這些有趣的現象,本研究中對純 nanosilica 和modified nanosilica 的表面形態、紅外線光譜及比表面積,及延伸後纖維樣品的順向度和延伸機理進行研究。


Systemic investigation of the influence of the original and modified nanosilica contents on the ultradrawing properties of ultrahigh molecular weight polyethylene(UHMWPE)/nanosilica (F100Sy) and UHMWPE/ modified nanosilica (F100Smx-y) as-prepared fibers are reported. In a way similar to those found for the orientation factor values, the achievable draw ratios (Dra) of F100Sy and F100Smx-y as-prepared fibers approached a maximum value as their nanosilica and/or modified nanosilica contents reached their corresponding optimum values at 0.0625 and 0.0375 phr, respectively. The maximum Dra values obtained for F100Smx-0.0375 as-prepared fiber specimens prepared at varying maleic anhydride grafted polyethylene (PE-g-MAH)/nanosilica weight ratios were significantly higher that of the F100S0.0625 as-prepared fiber specimen prepared at the optimum nanosilica content. Tensile property analyses further suggested that excellent orientation and tensile properties of the drawn F100Sy and F100Smx-y fibers can be obtained by ultradrawing the fibers prepared at their optimum original nanosilica and/or modified nanosilica contents, respectively. To understand the interesting orientation, ultradrawing and tensile properties of F100Sy and F100Smx-y fiber specimens, FTIR and specific surface area analyses of the original and modified nanosilica particles were performed in this study.

論文摘要.....................................................................................................Ⅱ ABSTRACT................................................................................................Ⅳ 誌謝.............................................................................................................Ⅴ 目錄.............................................................................................................Ⅵ 圖表索引.....................................................................................................Ⅸ 第一章 前言..............................................................................................1 第二章 文獻回顧..................................................................................12 2.1 聚乙烯簡介....................................................................................12 2.2 高強力聚乙烯纖維........................................................................13 2.2.1 高強力聚乙烯纖維之製造技術.............................................13 2.2.1.1 固態擠出法(solid state extrusion).............................13 2.2.1.2 超延伸法(ultradrawing).............................................14 2.2.1.3 區域延伸法(zone drawing)........................................15 2.2.1.4 表面成長法(surface growth method)........................16 2.2.1.5 凝膠紡絲法(gel spinning)........................................18 2.2.2 UHMWPE使用凝膠紡絲技術得到高強力纖維的原因.......19 2.2.3 UHMWPE凝膠紡絲的技術要點...........................................20 2.3 熱拉伸對凝膠原絲形態和結構的影響.......................................22 2.3.1 型態和力學性質....................................................................22 2.3.2 熱性能....................................................................................22 2.3.3 聚集態結構............................................................................23 2.4奈米二氧化矽的結構及性能...........................................24 2.4.1奈米二氧化矽的結構.........................................................24 2.4.2奈米二氧化矽的性質.............................................................25 2.4.3奈米二氧化矽的分散方法......................................................25 2.4.4奈米二氧化矽/聚乙烯複合材料相關文獻............................27 第三章 實驗 3.1 UHMWPE/ modified nanosilica凝膠纖維的製備........................29 3.1.1改質二氧化矽(modified nanosilica)製備..............................29 3.1.2凝膠溶液的製備......................................................................30 3.1.3凝膠紡絲流程..........................................................................32 3.2 Nanosilica和modifying nanosilica的紅外光譜測試….………...34 3.3 Nanosilica和modifying nanosilica的型態分析............................34 3.4 Nanosilica和modified nanosilica比表面積分析….…………….34 3.5熱學性質分析.................................................................................34 3.6分子順向度分析.............................................................................35 3.7定溫熱延伸性質測定.....................................................................36 3.8抗張性質分析.................................................................................37 第四章 結果與討論 4.1 nanosilica和modified nanosilica樣品的的傅立葉轉換紅外線光譜分析................................................................................................38 4.2 nanosilica和modified nanosilica樣品型態分析............................40 4.3 nanosilica和modified nanosilica樣品的比表面積分析................42 4.4 UHMWPE,UHMWPE/ nanosilica及UHMWPE/ modified nanosilica初絲纖維熱學性質分析................................................44 4.5 UHMWPE,UHMWPE/ nanosilica及UHMWPE/ modified nanosilica纖維的可延伸性質........................................................53 4.6 UHMWPE,UHMWPE/ nanosilica及UHMWPE/ modified nanosilica纖維樣品順向度分析....................................................55 4.7 UHMWPE,UHMWPE/ nanosilica及UHMWPE/modified nanosilica 纖維的抗張性質..........................................................58 第五章 結論............................................................................................61 參考文獻..................................................................................................63  

1. P. Smith, P. J. Lemstra, J. Mater. Sci., 15, 505 (1980).
2. P. Smith, P. J. Lemstra and H. C. Booij, J. Mater. Sci., 19, 877 (1981).
3. J. Smook, A. J. Pennings, J. Mater. Sci., 19, 31 (1984).
4. P. Smith, P. J. Lemstra, J. P. L. Pippers and, A. M. Kiel, Coll. Polym. Sci., 258, 1070 (1981).
5. J. Bore, H. J. Vanden Berg and A. J. Pennings, Polymer, 25, 513 (1984).
6. M. Matsuo and R. St. J. Manley, Macromolecules, 15, 985 (1982).
7. T. Kanamoto, A. Tsuruta, K. tanaka, T. Takeda and R. S. Porter, Polym. J., 15, 327 (1983).
8. K. Furuhata, T. Yokokawa and K. Miyasaka, J. Polym. Sci., Polym. Phys. Ed., 22, 133 (1984).
9. A. Zhang, K. Chen, H. Zhao and Z. Wu, J. Appl. Polym. Sci., 38, 1369 (1989).
10. K. Chen, A. Zhang, P. Lu and Z. Wu, J. Appl. Polym. Sci., 38, 1377 (1989).
11. X. Wang. S. Li and R. Salovey, J. Appl. Polym. Sci., 35, 2165 (1988).
12. A. E. Zacharrriades and R. S. Porter, Ed., "The Strength and Stiffness of Polymer", Marcel Dekker, Inc., New Tork (1983).
13. N. Nakajima, J. Ibata, Japan Patents 57177035, 57177036, 57177037 (1983).
14. C. Sawatari, and M. Matsuo, Polymer, 30, 1603 (1989).
15. I. Simeonov, Z. Nikolova, P. Komitov, K. Naidenova, Bulgarian Patent 31,868 (1982).
16. M. Mihailov and L. Minkova, Coll. & Polym. Sci., 265, 681 (1987).
17. Y. L. Huang and N. Brown, Polymer, 33, 2989 (1992).
18. J. T. Yeh, Y. L. Lin and C. C. Fan-Chiang, Macromol. Chem. Phys.,
197, 3531 (1996).
19. J. T. Yeh and H. C. Wu, Polym. J., 30, 1 (1998).
20. J. T. Yeh and S. S. Chang, J. Appl. Polym. Sci., 70, 149 (1998).
21. J. T. Yeh and S. S. Chang, J. Mater. Sci., 35, 3227 (2000).
22. J. T. Yeh and S. S. Chang, J. Appl. Polym. Sci., 79, 1890 (2001)
23. J. T. Yeh and S. S. Chang, Polym. Eng. Sci., 42, 1558 (2002).
24. J. T. Yeh, Y. T. Lin and K. N. Chen, J. Polym. Res., 10, 55 (2003).
25. J. T. Yeh, S. C. Lin, K. S. Huang and K. N. Chen, J. Appl. Polym. Sci., 110, 2538 (2008).
26. J. T. Yeh, Y. C. Lai, H. Liu, Polym. Int., 60, 59 (2011).
27. J. T. Yeh, T. W. Wu, Y. C. Lai, Q. C. Li, H. P. Zhou, Q. Zhou, Y. C. Shu, C.Y. Huang, K. S. Huang and K. N. Chen, Polym. Eng. Sci., 51, 2552 (2011).
28. J. T. Yeh, T. W. Wu, Y. C. Lai, H. P. Zhou, Q. Zhou, Q. C. Li, S. Wen, C. Y. Huang, K. S. Huang and K. N. Chen, Polym. Eng. Sci., 51, 687 (2011).
29. J. T Yeh, C. K. Wang, Q. Zhou, H. P. Zhou, Y. C. Lai, C. Y. Huang, and K. N. Chen, Ultradrawing Properties of “Ultra-highMolecular Weight Polyethylene Fibers Prepared Using Conical Dies with Varying Dimensions” Polym. Eng. Sci., submitted for publication.
30. T.Ohta, Polym. Eng. Sci., 2313, 697 (1983).
31. J. T. Yeh, C. K. Wang, A. Yeh, L. K. Huang, W. H. Wang, Y. C. Lai, K. H. Hsieh, C. Y. Huang and K, N, Chen, Polym. Inter., in press, (2012).
32. J. T. Yeh, C. K. Wang, P. Hu, Y. C. Lai and F. C. Tsai, Polym. Int., in press (2012).
33. W. M. Perkins, N. J. Capiati, and R. S. Porter, Polym. Eng. Sci., 16, 200 (1976).
34. A. E. Zahariades, T. Kanamoto and R. S. Porter, J. Polym. Sci., Polym. Phy. Ed., 18, 575 (1980).
35. D. M. Bigg, M. M. Epstein, R. J. Fiorentine and E. G. Smith, J. Appl. Polym. Sci., 26, 395 (1981).
36. W. Wu and W. B. Black, Polym. Eng. Sci., 19, 1169 (1979).
37. W. Wu, P. G. Simpson and W. B. Black, J. Polym. Sci., Polym. Phys. Ed., 18, 751 (1970).
38. W. N. Taylor and E. S. Clark, Polym. Eng. Sci., 18, 518 (1978).
39. E. S. Clark and L. S. Scott, Polym. Eng. Sci., 14, 682 (1974).
40. H. Kiho and K. Asai, Kobunshi Toronkai Preprint (Japan), 835 (1974).
41. M. Kamezawa, K. Yamada and M. Takayanagi, J. Appl. Polym. Sci., 24, 1227 (1979).
42. S. N. Zurkov, B. Ya. Levin and A. V. Savitskij, Dokl. Ahad. Nauk SSSR, 186, 32 (1969).
43. A. Zweinenburg, PhD thesis, State Univ. of Groningen (1978).
44. A. J. Pennings and C. J. H. Schouteten and A. M. Kiel, J. Appl. Polym. Sci., 167 (1972).
45. P. Smith, P. J. Lemstra, B. Kalb and A. J. Pennings, Polym. Bull., 1, 733 (1979).
46. J. Smook, C. J. Torf, P. F. VanHutten and A. J. Pennings, Polym. Bull., 2, 293 (1980).
47. P. J. Barham and A. Keller, J. Mater. Sci., 15, 2229 (1980).
48. Ray H. Baughman, A. A. Zakhidov, Walt. A. de Heer, Sci., C, 297 (2002).
49. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, R. E. Smalley, Science, 280, 1253(1998).
50. S. C. Tsang, P. J. F. Harris, M. L. H. Green, Nature, 362, 520(1993).
51. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green, Nature, 372, 159 (1995).
52. 晨光化工研究院有機矽編寫組,有機矽單體及聚合物,化學工業出版社,第427-428頁(1986)。
53. H. Ishida, Jack L, Journal of Colloid and Interface science, 64.3, 555-564(1978).
54. DE Haan J w, Van Den Bogaert H M, Oonjee JJ, etal, Journal of Col Ioid and Interface Science, 110.2 , 591-60(1986).
55. Daniel M W,Francis Lf, Journal of Colloid and Interface Science, 205.1, 191-200(1998).
56. 郭衛紅,李盾,蘇誠偉等,塑膠工業,26.5,第10-12頁(1998)。
57. Min Zhi Rong,Ming Qiu Zhang, Yong Xiang Zheng, Polymer, 42, 3301(2001).
58. Scott, C.,Ishida, H. and Murer, F. H. J., “Composite Interfaces”, 177-193 (1986).
59. Duchet, J., Chapel, J. P., Chabert, B., Spitz, R. and Gerard, J. F.,Journal of Applied Polymer Science, 65, 2481-2492 (1997).
60. Wang, K. H., Choi, H., Koo, C. M., Xu, M., Chung, I. J., Jang, M. C.,Choi, S. W. and Song, H. H., J. Polym. Sci.: Part B:Polym. Phys., 40, 1454-1463 (2002).
61. Kageyama, K., Nature, 285, 2113-2115 (1999).
62. Wu, C. S. and Liao, H. T., Journal of Applied Polymer Science, 88,966-972 (2003).
63. J. D. Hoffman, R. L. Miller, Polymer, 38, 3151 (1997).
64. J. D. Hoffman, J. J. Weeks, J. Res. Natl. Bur. Stand., 66, 13 (1962).
65. X. Chai, J. Liu, Q. He, G. Peng and C. Yang., Appl. Surf. Sci., 257(11), 10771-10774(2011).
66. G. D. Liang, J. T. Xu, S. P. Bao and W. B. Xu, J. Appl. Polym. Sci., 91(6), 3974-3980(2004).
67. T. Jiang, J. T. Yeh, Y. T. Lin and K. N. Chen., Polym. Eng. Sci., 43(11), 1765-1777(2003).
68. M. Matsuo, C. Sawatari, M. Iida and M. Yoneda, Polym. J., 17(11), 1197-1208(1985).
69. W. Hoogsteen, G. ten Brinke and A. J. Pennings, Colloid Polym. Sci. 266, 1003 (1988).

無法下載圖示 全文公開日期 2018/01/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE