簡易檢索 / 詳目顯示

研究生: 李承遠
Chen-Yuan Lee
論文名稱: 碳化矽基板碳包裹物衍生磊晶缺陷研究
Research of Homoepitaxial Defects from Carbon Inclusions on 4H Silicon Carbide Substrate
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 張復瑜
Fuh-Yu Chang
李奇澤
Chi-Tse Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 131
中文關鍵詞: 碳化矽基板碳包裹物磊晶
外文關鍵詞: SiC substrate, Carbon Inclusions, Epitaxy
相關次數: 點閱:297下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

4H碳化矽基板作為高功率半導體重要材料,表面的缺陷對後續元件品質有很大的影響,本研究探討基板材料中的碳包裹物缺陷對磊晶後的表面缺陷有何影響。材料選用6吋N-Type晶圓,在表面以微分干涉影像與光致發光(Photoluminescence)影像檢出碳包裹物,再將其表面以CVD(Chemical Vapor Deposition)方法同質磊晶11 µm的碳化矽磊晶層,完成後再對表面同樣以微分干涉、光致發光觀察,找出在磊晶過後碳包裹物產生了何種缺陷。
接著對常見缺陷深入探討,以非破壞性檢測與破壞性檢測手段分析各種缺陷。非破壞性檢測在缺陷處以光學顯微鏡、拉曼光譜檢測表面與碳包裹物特性;破壞性檢測則以熔融KOH蝕刻揭露差排缺陷,具體以蝕刻、移除部分厚度、再蝕刻的方式,多層次觀察碳包裹物產生的磊晶缺陷在磊晶過程中的衍生機制。
最後在歸類數種磊晶缺陷後,統計碳包裹物產生各類磊晶缺陷的機率。


As a promising material for high performance IC, quality of 4H-SiC N-Type substrate is the key of making excellent chips. In this paper, we focus on a defect which is called carbon inclusion. Specimens are 150mm (6 inch) polished wafers product. In the beginning, carbon inclusions are inspected by both confocal optics and photoluminescence inspection system. Then 11 µm homoepitaxial layer is deposited on wafer by CVD, and inspected by confocal optics and photoluminescence inspection system. By the position of the defect, relationship between carbon inclusions and epitaxial defects is confirmed.
Then we studied these defect in detail by non-destructive methods and destructive methods to investigate their property. Non-destructive methods include optical microscope and Raman spectroscopy, these instruments provide the information of chemical composition of these defects both on the surface and underneath the surface. On the other hand, destructive method requires repeat procedure of KOH etching and thickness removing layer by layer. KOH etching unveils the invisible defects in the epitaxial layer, help us understand the mechanism of defect development.
Last but not least, carbon inclusions on full wafer is classified and statistic is reported.

摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 1、 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究流程 2 1.4 論文架構 3 2、 文獻回顧 5 2.1 碳化矽晶圓製程 5 2.1.1 碳化矽晶碇長晶 5 2.1.2 碳化矽晶碇切片 8 2.1.3 碳化矽晶片圓邊 13 2.1.4 碳化矽晶片研磨與磨平 14 2.1.5 碳化矽晶片拋光 16 2.1.6 碳化矽晶片清洗 18 2.1.7 磊晶 20 2.2 碳化矽晶圓缺陷 22 2.2.1 表面微粒 22 2.2.2 表面刮傷 23 2.2.3 碳包裹物 24 2.2.4 微管 25 2.2.5 螺位錯 27 2.2.6 刃位錯 27 2.2.7 基晶面位錯 28 2.2.8 層錯 29 2.2.9 三角形 31 3、 研究架構與設備 33 3.1 破壞性檢驗設備 33 3.1.1 高溫蝕刻爐 34 3.1.2 蝕刻坑檢驗標準 37 3.1.3 拋光機 38 3.2 非破壞性檢測設備 39 3.2.1 Lasertec SICA88 40 3.2.2 厚度量測儀器 42 3.2.3 UniDRON 顯微拉曼光譜 43 3.2.4 光學顯微鏡 46 3.3 輔助分析軟體 47 3.3.1 SICA Viewer 47 3.3.2 缺陷疊圖軟體 48 3.4 材料各項性質 50 3.5 實驗流程 52 3.5.1 破壞性實驗流程 53 3.5.2 非破壞性實驗流程 56 4、 實驗結果與討論 58 4.1 缺陷細分 58 4.1.1 白斑層錯 58 4.1.2 黑頭層錯 64 4.1.3 三角形 72 4.1.4 白斑 78 4.1.5 結晶形缺陷 84 4.1.6 小坑 90 4.1.7 其他缺陷 99 4.1.8 小結 102 4.2 缺陷統計 102 4.2.1 分析結果 103 4.2.2 結果討論 106 5、 結論與未來展望 108 5.1 結論 108 5.2 未來展望 109 參考文獻 110

[1] T. Kimoto, “Bulk and epitaxial growth of silicon carbide,” Progress in Crystal Growth and Characterization of Materials, vol. 62, no. 2, pp. 329–351, Jun. 2016, doi: 10.1016/J.PCRYSGROW.2016.04.018.
[2] 趙培勛, “導輪磨耗於線鋸切割影響研究”, 國立臺灣科技大學機械工程系碩士學位論文, 2011
[3] 謝啟祥, “SiC材料製程技術.”
[4] B. Sopori et al., “Characterizing damage on Si wafer surfaces cut by slurry and diamond wire sawing,” Conference Record of the IEEE Photovoltaic Specialists Conference, pp. 945–950, 2013, doi: 10.1109/PVSC.2013.6744298.
[5] M. Swoboda, R. Rieske, C. Beyer, A. Ullrich, G. Gesell, and J. Richter, “Cold split kerf-free wafering results for doped 4H-SiC boules,” Materials Science Forum, vol. 963 MSF, pp. 10–13, 2019, doi: 10.4028/www.scientific.net/MSF.963.10.
[6] “Infineon покупает стартап с передовой технологией расщепления кремниевых пластин.” https://3dnews.ru/978195/infineon-pokupaet-startap-s-peredovoy-tehnologiey-rasshchepleniya-kremnievih-plastin (accessed Oct. 21, 2022).
[7] M. Swoboda, C. Beyer, R. Rieske, W. Drescher, and J. Richter, “Laser assisted SiC wafering using COLD SPLIT,” Materials Science Forum, vol. 897 MSF, pp. 403–406, 2017, doi: 10.4028/www.scientific.net/MSF.897.403.
[8] K. Hirata, “New laser slicing technology named KABRA process enables high speed and high efficiency SiC slicing,” vol. 1052003, no. February 2018, p. 2, 2018, doi: 10.1117/12.2291458.
[9] 台灣鑽石工業股份有限公司, “半導體晶圓金屬磨邊砂輪規格表.”
[10] “Edge/Notch Profile Measurement System|KOBELCO LEO|KOBELCO RESEARCH INSUTITUTE INC LEO BUSINESS.” https://www.kobelcokaken.co.jp/leo/en/item/lep/ (accessed Oct. 22, 2022).
[11] S. Gao, H. Li, H. Huang, and R. Kang, “Grinding and lapping induced surface integrity of silicon wafers and its effect on chemical mechanical polishing,” Appl Surf Sci, vol. 599, no. May, p. 153982, 2022, doi: 10.1016/j.apsusc.2022.153982.
[12] R. Jin and X. Deng, “Ensemble Modeling for Data Fusion in Manufacturing Process Scale-up”.
[13] S. Chidambaram, Z. J. Pei, and S. Kassir, “Fine grinding of silicon wafers: A mathematical model for grinding marks,” Int J Mach Tools Manuf, vol. 43, no. 15, pp. 1595–1602, 2003, doi: 10.1016/S0890-6955(03)00187-1.
[14] C. Song, F. Shi, W. Zhang, Z. Lin, and Y. Lin, “High-efficiency and low-damage lapping process optimization,” Materials, vol. 13, no. 3, 2020, doi: 10.3390/ma13030569.
[15] J. R. Grim, M. Benamara, M. Skowronski, W. J Everson, and V. D. Heydemann, “Transmission electron microscopy analysis of mechanical polishing-related damage in silicon carbide wafers,” Semicond Sci Technol, vol. 21, no. 12, pp. 1709–1713, 2006, doi: 10.1088/0268-1242/21/12/035.
[16] G. Ma, S. Li, F. Liu, C. Zhang, Z. Jia, and X. Yin, “A Review on Precision Polishing Technology of Single-Crystal SiC,” Crystals (Basel), vol. 12, no. 1, 2022, doi: 10.3390/cryst12010101.
[17] H. S. Lee, D. I. Kim, J. H. An, H. J. Lee, K. H. Kim, and H. Jeong, “Hybrid polishing mechanism of single crystal SiC using mixed abrasive slurry (MAS),” CIRP Annals, vol. 59, no. 1, pp. 333–336, Jan. 2010, doi: 10.1016/J.CIRP.2010.03.114.
[18] “弘塑科技股份有限公司.” http://www.gptc.com.tw/tw/product/product_detail-16 (accessed Dec. 18, 2022).
[19] H. Tsuchida, I. Kamata, T. Miyazawa, M. Ito, X. Zhang, and M. Nagano, “Recent advances in 4H-SiC epitaxy for high-voltage power devices,” Mater Sci Semicond Process, vol. 78, pp. 2–12, May 2018, doi: 10.1016/J.MSSP.2017.11.003.
[20] T. Kimoto et al., “FUNDAMENTALS OF SILICON CARBIDE TECHNOLOGY,” 2014
[21] X. F. Liu et al., “Defect appearance on 4H-SiC homoepitaxial layers via molten KOH etching,” J Cryst Growth, vol. 531, p. 125359, Feb. 2020, doi: 10.1016/J.JCRYSGRO.2019.125359.
[22] L. X. Zhao, L. Yang, and H. W. Wu, “High quality 4H-SiC homo-epitaxial wafer using the optimal C/Si ratio,” J Cryst Growth, vol. 530, p. 125302, Jan. 2020, doi: 10.1016/J.JCRYSGRO.2019.125302.
[23] “Refining SiC epi-growth for high-volume production - News.” https://compoundsemiconductor.net/article/106637/Refining_SiC_epi-growth_for_high-volume_production (accessed Oct. 30, 2022).
[24] Y. Daigo, T. Watanabe, A. Ishiguro, S. Ishii, and Y. Moriyama, “Influence and Suppression of Harmful Effects Due to By-Product in CVD Reactor for 4H-SiC Epitaxy,” IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, vol. 34, no. 3, 2021, doi: 10.1109/TSM.2021.3077627.
[25] J. Guo, Y. Yang, B. Raghothamachar, T. Kim, M. Dudley, and J. Kim, “Understanding the microstructures of triangular defects in 4H-SiC homoepitaxial,” J Cryst Growth, vol. 480, pp. 119–125, Dec. 2017, doi: 10.1016/J.JCRYSGRO.2017.10.015.
[26] L. Dong et al., “Growth of 4H-SiC epilayers with low surface roughness and morphological defects density on 4°off-axis substrates,” Appl Surf Sci, vol. 270, pp. 301–306, Apr. 2013, doi: 10.1016/J.APSUSC.2013.01.018.
[27] S. I. Nakashima, T. Mitani, M. Tomobe, T. Kato, and H. Okumura, “Raman characterization of damaged layers of 4H-SiC induced by scratching,” AIP Adv, vol. 6, no. 1, p. 015207, Jan. 2016, doi: 10.1063/1.4939985.
[28] “JEITA / JEITA Standards / Electronic Devices Standardization / Semiconductor Devices Reliability.” https://www.jeita.or.jp/cgi-bin/standard_e/list.cgi?cateid=5&subcateid=34 (accessed Oct. 30, 2022).
[29] T. Hatakeyama, K. Ichinoseki, K. Fukuda, N. Higuchi, and K. Arai, “Evaluation of the quality of commercial silicon carbide wafers by an optical non-destructive inspection technique,” J Cryst Growth, vol. 310, no. 5, pp. 988–992, Mar. 2008, doi: 10.1016/J.JCRYSGRO.2007.11.141.
[30] D. D. Avrov, A. v. Bulatov, S. I. Dorozhkin, A. O. Lebedev, and Y. M. Tairov, “Defect formation in silicon carbide large-scale ingots grown by sublimation technique,” J Cryst Growth, vol. 275, no. 1–2, pp. e485–e489, Feb. 2005, doi: 10.1016/J.JCRYSGRO.2004.11.112.
[31] H. J. Rost, J. Dolle, J. Doerschel, D. Siche, D. Schulz, and J. Wollweber, “Growth related distribution of secondary phase inclusions in 6H-SiC single crystals,” J Cryst Growth, vol. 225, no. 2–4, pp. 317–321, May 2001, doi: 10.1016/S0022-0248(01)00885-5.
[32] “4H 碳化硅衬底及外延层缺陷图谱 CASA 第 三 代 半 导 体 产 业 技 术 创 新 战 略 联 盟 标 准,” 2018.
[33] G. Feng, J. Suda, and T. Kimoto, “Characterization of major in-grown stacking faults in 4H-SiC epilayers,” Physica B Condens Matter, vol. 404, no. 23–24, pp. 4745–4748, Dec. 2009, doi: 10.1016/J.PHYSB.2009.08.189.
[34] SEMI, “SEMI Standard M55”.
[35] “研磨拋光機系列.” https://www.secular.com.tw/products-a/ (accessed Dec. 20, 2022).
[36] Lasertec Co., “Lasertec SiC Wafer Inspection and Review System SICA88.”
[37] “UniDRON - 景鴻科技有限公司 CL Technology Co., Ltd.” https://www.cl-technology.com.tw/product-detail-2063948.html (accessed Dec. 03, 2022).
[38] Z. Xiao, Y. Yang, S. Ouyang, Z. Kou, B. Huang, and X. Luo, “Raman investigation of defective SiC nanocrystals,” Journal of Raman Spectroscopy, vol. 46, no. 12, pp. 1225–1229, Dec. 2015, doi: 10.1002/JRS.4769.
[39] X. B. Li, Z. Z. Chen, and E. W. Shi, “Effect of doping on the Raman scattering of 6H-SiC crystals,” Physica B Condens Matter, vol. 405, no. 10, pp. 2423–2426, May 2010, doi: 10.1016/J.PHYSB.2010.02.058.
[40] Y. Li et al., “Reduction of morphological defects in 4H-SiC epitaxial layers,” J Cryst Growth, vol. 506, pp. 108–113, Jan. 2019, doi: 10.1016/J.JCRYSGRO.2018.10.023.
[41] T. Yamashita, T. Naijo, H. Matsuhata, K. Momose, H. Osawa, and H. Okumura, “Characteristic morphologies of triangular defects on Si-face 4H-SiC epitaxial films,” J Cryst Growth, vol. 433, pp. 97–104, Jan. 2016, doi: 10.1016/J.JCRYSGRO.2015.10.004.
[42] L. Guo, K. Kamei, K. Momose, and H. Osawa, “Evaluation and Reduction of Epitaxial Wafer Defects Resulting from Carbon-Inclusion Defects in 4H-SiC Substrate,” Materials Science Forum, vol. 897, pp. 39–42, 2017, doi: 10.4028/WWW.SCIENTIFIC.NET/MSF.897.39.
[43] Y. Daigo and A. Ishiguro, “Origin of Large Bumps Abnormally Grown on 4H-SiC Epitaxial Film by Adding HCl Gas with High Cl/Si Ratio in CVD Process,” Materials Science Forum, vol. 1004, pp. 91–95, 2020, doi: 10.4028/WWW.SCIENTIFIC.NET/MSF.1004.91.

無法下載圖示 全文公開日期 2033/01/10 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE