簡易檢索 / 詳目顯示

研究生: 曾繁平
Fan-Ping Tseng
論文名稱: 金屬氧化物薄膜電晶體性能改善及其於AMOLED顯示器及光感測器應用之研究
Performance Improvement of Oxide Thin-Film Transistors and Its Application on AMOLED Displays and Photodetectors
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 范慶麟
Fan-Ching Lin
徐世祥
Shih-Hsiang Hsu
黃柏仁
Bohr-Ran Huang
李志堅
Chih-Chien Lee
劉舜維
Shun-Wei Liu
顏文正
Wen-Cheng Yen
王錫九
Shea-Jue Wang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 121
中文關鍵詞: 金屬氧化物薄膜電晶體畫素電路保護層光電晶體
外文關鍵詞: Metal oxide, Thin-Film Transistor, Pixel circuit, Passivation layer, Phototransistor
相關次數: 點閱:284下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 顯示器在日常生活中的應用越來越廣泛,其應用包含高畫素大尺寸主動矩陣式有機發光二極體顯示器、虛擬時境及互動式顯示器,這些下一世代的顯示器皆具備高畫素密度,而金屬氧化物薄膜電晶體搭配傳統的二氧化矽閘極絕緣層的電特性效能已經不符合外來顯示器的需求。此外,在一般的使用下,顯示器是在大氣環境下操作,因此顯示器內部的薄膜電晶體需要製作一層保護層來隔絕空氣中的水氣及氧氣。因此,本論文的研究主題包含:1. CF4電漿處理技術提升铟鎵鋅氧化物薄膜電晶體電特性效能之研究;2. 鐵氟龍/二氧化矽雙層保護層應用在铟鎵鋅氧化物薄膜電晶體之環境穩定性的探討;3. 3T0.5C AM-OLED畫素驅動電路的設計與研究及4. 銦鋅錫氧化物光電晶體應用於光感測器之研究。我們利用氧化鉿當作閘極絕緣層來製作铟鎵鋅氧化物薄膜電晶體,所製作出來的電晶體其載子遷移率達30 cm2/V∙s,此外,為了更進一步的提升電晶體的電特性及載子遷移率,我們使用CF4電漿處理技術應用在铟鎵鋅氧化物薄膜電晶體,經過處理過後的電晶體其載子遷移率顯著的提升至54.6 cm2/V∙s,而且元件的遲滯效應也有跟著降低。在鐵氟龍/二氧化矽雙層保護層的研究方面,在二氧化矽下先沉積一層鐵氟龍薄膜的目的是為了降低沉積二氧化矽時的電漿傷害,因此此雙層絕緣層的製程並不會影響到薄膜電晶體的電特性,且可以有效的提供阻擋水氣的效果。
    在AM-OLED顯示器畫素補償電路的研究上面,我們提出了一個3T0.5C的畫素補償電路,此畫素電路具備補償驅動電晶體臨界電壓偏移的功能及可持續提供一負偏壓給OLED提升OLED的壽命。金屬氧化物薄膜電晶體除了可以當作開關元件之外,其還可以當作光電晶體,此是由於金屬氧化物本身為寬能隙的材料,因此金屬氧化物薄膜對於紫外線波段相當敏感,在本篇論文中,我們提出了使用銦鋅錫氧化物半導體來製作薄膜電晶體式的光感測器,由於我們使用高介電常數氧化鉿材料當作閘極絕緣層來提升光電晶體的載子遷移率,因此所製作出來的銦鋅錫氧化物光電晶體的載子遷移率高達89.47 cm2/V∙s,高的載子遷移率將有助於產生較好的光響應電流提升光電晶體的響應度,所製作出來的光電晶體其光響應度可達108 A/W,在光感測器領域算是相當大的突破。


    In view of high resolution and fast operation are the demands of the next generation displays. The improvement of the electrical performance and carrier mobility of the oxide thin-film transistors (TFTs) is critical due to the operation speed of the active-matrix organic light emitting diode (AM-OLED) displays pixel circuit is related to the TFT performance. In addition, in the practical application, the environmental effect is a crucial issue in oxide-TFT due to the ambient molecules will seriously degrade the characteristics of the oxide TFT. Thus, the electrical performance and the reliability of the oxide TFT should be investigated and improved. This dissertation proposed a high performance amorphous indium-gallium-zinc oxide (a-IGZO) TFT with high dielectric constant HfO2 gate insulator. The carrier mobility of the a-IGZO TFTs reaches 30.2 cm2/V∙s. In addition, after the CF4 plasma treatment on the IGZO channel, the carrier mobility of the a-IGZO TFT significantly improves to 54.6 cm2/V∙s, and the hysteresis phenomenon of the a-IGZO TFT also decreases after the CF4 plasma treatment. On the other hand, the reliability of a-IGZO TFTs with Teflon/SiO2 bilayer passivation prepared under positive and negative gate bias stresses (PGBS and NGBS, respectively) was investigated. The Teflon/SiO2 bilayer passivation can effectively block the molecules from ambient environment and the reliability of the a-IGZO TFTs are further improved.
    As for the application to the AM-OLED displays, a 3T0.5C compensating pixel circuit with the simultaneous emission (SE) method are proposed in this dissertation. The 6T1C pixel circuit is built on two adjacent pixels, and thus the equivalent circuit is 3T0.5C, which has a superior aperture ratio. The pixel circuit can compensate for the DTFT’s threshold voltage deviation and provide a reverse bias to the OLED to ameliorate the OLED lifetime.
    Besides the application as switching device in the AM-OLED displays, metal oxide semiconductor materials can also be utilized to photodetector. The IZTO semiconductor is the first time to utilize as the active layer to fabricate photo-TFT in this dissertation. The a-IZTO photo-TFT was employed with the high-k HfO2 gate insulator and the films of the device were patterned by photolithography. The carrier mobility of the a-IZTO photo-TFT reaches 89.47 cm2/V∙s, which is beneficial to the transportation of the light-induced carriers to provide high photoresponsivity. The small detection area of the proposed photo-TFT with a high responsivity indicates that the device has high potential to apply in the active-matrix sensor array. It is believed that the IZTO semiconductor has high potential for utilizing as an active layer of the photodetectors.

    Abstract (in Chinese) I Abstract III Acknowledgement (in Chinese) V Contents VI List of Tables XI List of Figures XII Chapter 1 1 Introduction 1 1.1 Overview of Thin-Film Transistors 1 1.2 Overview of Metal-Oxide Thin-Film Transistors 2 1.2.1 Charge Transport in Metal-Oxide TFTs 3 1.2.2 Device Structures and Operation of Metal-Oxide TFTs 4 1.3 Overview of AMOLED Displays 6 1.3.1 Organic Light Emitting Diode (OLED) 6 1.3.2 OLED Structure and Operation 7 1.3.3 AMOLED Pixel Circuit Driving Schemes 8 1.3 Overview of Photodetectors 9 1.4 Overview of Metal-Oxide Phototransistors 10 1.4.1 Detection Mechanism of Metal-Oxide Phototransistors 10 1.5 Motivation 11 1.6 Thesis Organization 14 Chapter 2 23 Device Fabrication and Electrical Parameters Extraction 23 2.1 Material Selection 23 2.1.1 Gate Electrode 23 2.1.2 Gate Insulator 23 2.1.3 Semiconductor Layer 24 2.1.4 Source and Drain Electrodes 24 2.2 Device Fabrication Processes 24 2.3 Electrical Measurement and Characterization for TFTs 25 2.3.1 Electrical Measurement 25 2.3.2 Electrical Characterization 25 2.4 Electro-Optical Characterization for Phototransistors 29 2.4.1 Photo-responsivity 30 2.4.2 Photo-sensitivity 30 2.4.3 Linear Dynamic Range (LDR) 31 2.4.4 Detectivity 31 Chapter 3 38 Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO2 Gate Dielectric by CF4 Plasma Treatment 38 3.1 Introduction 38 3.2 Experiments 40 4.3 Results and Discussion 41 4.4 Summary 45 Chapter 4 54 Improvement in Reliability of Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Teflon/SiO2 Bilayer Passivation under Gate Bias Stress 54 4.1 Introduction 54 4.2 Experiments 56 4.3 Results and Discussion 57 4.4 Summary 60 Chapter 5 69 3T0.5C Compensating Pixel Circuit with All P-Type LTPS-TFTs for AMOLED Displays 69 5.1 Introduction 69 5.2 Circuit Operation 71 5.3 Simulation Results 75 5.4 Summary 78 Chapter 6 88 High Responsivity of Amorphous Indium-Zinc-Tin-Oxide Phototransistors with HfO2 Gate Dielectric 88 6.1 Introduction 88 6.2 Experiments 92 6.3 Results and Discussion 93 6.4 Summary 97 Chapter 7 106 Conclusions and Future Works 106 7.1 Conclusions 106 7.2 Future Works 107 References 109 Resume 122 Publication List 123 Appendix 125

    [1] C. L. Fan, Y. Z. Lin, and C. H. Huang, “Combined Scheme of UV/Ozone and HMDS Treatment on a Gate Insulator for Performance Improvement of a Low-Temperature-Processed Bottom-Contact OTFT,” Semiconductor Science and Technology, Vol. 26, No. 3, pp. 045006-1-045006-5 (2011).
    [2] T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, “Flexible Organic Transistors and Circuits with Extreme Bending Stability,” Nature Materials, Vol. 9, No. 12, pp. 1015-1022 (2010).
    [3] A. C. Mayer, M. T. Lloyd, D. J. Herman, T. G. Kasen, and G. G. Malliaras, “Postfabrication Annealing of Pentacene-Based Photovoltaic Cells,” Applied Physics Letters, Vol. 85, No. 25, pp. 6272-6274 (2004).
    [4] C. C. Lee, C. H. Yuan, S. W. Liu, and Y. S. Shih, “Efficient Deep Blue Organic Light-Emitting Diodes Based on Wide Band Gap 4-Hydroxy-8-Methyl-1.5-Naphthyridine Aluminum Chelate as Emitting and Electron Transporting Layer,” Journal of Display Technology, Vol. 7, No. 8, pp. 454-458 (2011).
    [5] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, Vol. 432, No. 7016, pp. 488 (2004).
    [6] E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L.Pereira, and R. Martins, “Fully transparent ZnO thin-film transistor produced at room temperature,” Advanced Materials, Vol. 17 No.5, pp. 590-594 (2005).
    [7] L. Hoffman, B. H. Norrs, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Applied Physics Letters, Vol. 82, No. 5, pp. 733 (2003).
    [8] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, “High mobility bottom gate IGZO thin film transistors with Si Ox etch stopper,” Applied Physics Letters, Vol.90, No. 21, pp.212114 (2007)
    [9] J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment” Applied Physics Letters, Vol. 90, No. 26, pp. 262106 (2007).
    [10] J. K. Jeong, J. H. Jeong, H. W. Yang, J.-S. Park, Y.-G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel” Applied Physics Letters, Vol. 91, No.11, pp.113505 (2007)
    [11] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, “Biexciton emission from high-quality ZnO films grown on epitaxial GaN by plasma-assisted molecular-beam epitaxy,” Applied Physics Letters, Vol. 77, No. 4, pp.3761 (2000).
    [12] Y. W. Choi, J. N. Lee, T. W. Jang, “Thin-film transistors fabricated with Poly-Si films crystallized at low temperature by microwave annealing,” IEEE Electron Device Lett, Vol.20, No. 1, pp. 2-4 (1999).
    [13] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide emiconductor,” Science, Vol. 300, pp. 1269-1272 (2003)
    [14] T. Kamiya and H. Hosono, "Material characteristics and applications of transparent amorphous oxide semiconductors," NPG Asia Materials, Vol. 2, pp. 15-22 (2010).
    [15] H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," Journal of non-crystalline solids, Vol. 352, pp. 851-858 (2006).
    [16] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Applied Physics Letters, Vol. 51, pp. 913-915 (1987).
    [17] S. H. Jung, W. J. Nam, and M. K. Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Letters, Vol. 25, No. 10, pp. 690–692 (2004).
    [18] Y. H. Tai, B. T. Chen, Y. J. Kuo, C. C. Tsai, K. Y. Chiang, Y. J. Wei, and H. C. Cheng, “A new pixel circuit for driving organic light emitting diodes with low temperature polycrystalline thin film transistors,” Journal of Display Technology, Vol. 1, No. 1, pp. 100–104 (2005).
    [19] A. Saravanan, B. Huang, D. Kathiravan, and A. Prasannan, “Natural Biowaste-Cocoon-Derived Granular Activated Carbon-Coated ZnO Nanorods: A Simple Route To Synthesizing a Core−Shell Structure and Its Highly Enhanced UV and Hydrogen Sensing Properties,” ACS Applied Materials and Interfaces, Vol. 9, pp. 39771-39780 (2017).
    [20] B. D. Boruah, A. Mukherjee, S. Sridhar, and A. Misra, “Highly Dense ZnO Nanowires Grown on Graphene Foam for Ultraviolet Photodetection,” ACS Applied Materials and Interfaces, Vol. 7, pp. 10606-10611 (2015).
    [21] A. Khosropour and A. Sazonov, ” Microcrystalline Silicon Photodiode For Large Area NIR Light Detection Applications,” IEEE Electron Device Letters, Vol. 38, No. 2, pp. 225-227 (2017).
    [22] M. Park, M. Razaei, K. Barnhart, C. L. Tan, and H. Mohseni, “Surface passivation and aging of InGaAs/InP heterojunction phototransistors,” Journal of Applied Physics, Vol. 121, p. 233105 (2017).
    [23] W. Zhang, N. W. Emanetoglu, N. Bambha, and J. R. Bickford, “Design and analysis of In0.53Ga0.47As/InP symmetric gain optoelectronic mixers,” Solid-State Electronics, Vol. 54, pp. 1549-1553 (2010).
    [24] S. W. Shin, K. Lee, J. Park, and S. J. Kang, “Highly Transparent, Visible-Light Photodetector Based on Oxide Semiconductors and Quantum Dots,” ACS Applied Materials and Interfaces, Vol. 7, pp. 19666-19671 (2015).
    [25] Y. J. Tak, D. J. Kim, W. Kim, J. H. Lee, S. J. Kim, J. H. Kim, and H. J. Kim,” Boosting Visible Light Absorption of Metal-Oxide-Based Phototransistors via Heterogeneous In−Ga−Zn−O and CH3NH3PbI3 Films,” ACS Applied Materials and Interfaces, Vol. 10, pp. 12854-12861 (2018).
    [26] S. Ahn, I. Song, S. Jeon, Y. W. Jeon, Y. Kim, C. Kim, B. Ryu, J. Lee, A. Nathan, S. Lee, G. T. Kim, and U. Chung.” Metal Oxide Thin Film Phototransistor for Remote Touch Interactive Displays,” Adv. Mater., vol. 24, pp. 2631-2636 (2012).
    [27] S. Jeon, S. Ahn, I. Song, C. J. Kim, U. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, K. Ghaffarzadeh, J. Robertson, and K. Kim,” Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays,” Nature Materials, Vol. 11, pp. 301-305 (2012).
    [28] L. E. Aygun, F. B. Oruc, F. B. Atar, A. K. Okyay, “Dynamic Control of Photoresponse in ZnO-Based Thin-Film Transistors in the Visible Spectrum,” IEEE Photonics Journal, Vol. 5, pp. 2200707 (2013).
    [29] C. H. Ahn, W. J. Kang, Y. K. Kim, M. G. Yun, H. K. Cho, “Highly Repeatable and Recoverable Phototransistors Based on Multifunctional Channels of Photoactive CdS, Fast Charge Transporting ZnO, and Chemically Durable Al2O3 Layers,” ACS Applied Materials and Interfaces, Vol. 8, pp. 15518-15523 (2016).
    [30] S. H. Lee, J. W. Kim, T. I. Lee, J. M. Myoung, “Inorganic Nano Light-Emitting Transistor: p-Type Porous Silicon Nanowire/n-Type ZnO Nanofilm,” Small, Vol. 12, pp. 4222-4228 (2016).
    [31] S. Chang, T. H. Chang, W. Y. Weng, C. J. Chiu, S. P. Chang, “Amorphous InGaZnO Ultraviolet Phototransistors with a Thin Ga2O3 Layer, ” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 20, pp. 3803605 (2014).
    [32] H. Zhu, A. Liu, F. Shan, W. Yang, W. Zhang, D. Li, J. Liu, “One-step synthesis of graphene quantum dots from defective CVD graphene and their application in IGZO UV thin film phototransistor,” Carbon, Vol. 100, pp. 201-207 (2016).
    [33] H. Choi and S. Jeon, “Anomalous high photoconductivity in short channel indium-zinc-oxide photo-transistors,” Applied Physics Letters, p. 106, 013503.
    [34] J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder, and X. Zhan, “n-Type Organic Semiconductors in Organic Electronics,” Advanced Materials, Vol. 22, No. 34, pp. 3876-3892 (2010).
    [35] H. W. Zan, K. H. Yen, P. K. Liu, K. H. Ku, C. H. Chen, and J. Hwang, “Low-Voltage Organic Thin Film Transistors with Hydrophobic Aluminum Nitride Film as Gate Insulator,” Organic Electronics, Vol. 8, No. 4, pp. 450-454 (2007).
    [36] A. Lodha and R. Singh, “Prospects of Manufacturing Organic Semiconductor-Based Integration Circuits,” IEEE Transactions on Semiconductor Manufacturing, Vol. 14, No. 3, pp. 281-296 (2001).
    [37] X. Liu, X. Yang, M. Liu, Z. Tao, Q. Dai, L. Wei, C. Li, X. Zhang, B. Wang, and A. Nathan, “Photo-modulated thin film transistor based on dynamic charge transfer within quantum-dots-InGaZnO interface,” Applied Physics Letters, Vol. 104, pp. 113501 (2014).
    [38] J. Li, F. Zhou, H. Lin, W. Zhu, J. Zhang, X. Jiang, and Z. Zhang, “Enhanced photosensitivity of InGaZnO-TFT with a CuPc light absorption layer,” Superlattices and Microstructures, Vol. 51, pp. 538-543 (2012).
    [39] B. D. Boruah, A. Mukherjee, S. Sridhar, and A. Misra, “Highly Dense ZnO Nanowires Grown on Graphene Foam for Ultraviolet Photodetection,” ACS Applied Materials and Interfaces, Vol. 7, pp. 10606-10611 (2015).
    [40] C. H. Ahn, Y. K. Kim, W. J. Kang, K. S. Kim, and H. K. Cho, “High photosensitivity and wide operation voltage in two-dimensional CdS nano-crystal layer embedded a-InGaZnO hybrid phototransistors,” Journal of Alloys and Compounds, Vol. 725, pp. 891-898 (2017).
    [41] X. Liu, Z. Tao, W. Kuang, Q. Huang, Q. Li, J. Chen, and W. Lei, “Dual-Gate Phototransistor With Perovskite Quantum Dots-PMMA Photosensing Nanocomposite Insulator,” IEEE Electron Device Letter, Vol. 38, No. 9, pp. 1270-1273 (2017).
    [42] Y. S. Rim , M. Yang , S. Bae , H. Chen , C. Li , M. S. Goorsky , and Y. Yang, “Ultrahigh and Broad Spectral Photodetectivity of an Organic–Inorganic Hybrid Phototransistor for Flexible Electronics,” Advanced Materials, Vol. 27, pp. 6885-6891 (2015).
    [43] B. H. Kang, W. Kim, J. Chung, J. H. Lee, and H. J. Kim, “Simple Hydrogen Plasma Doping Process of Amorphous Indium Gallium Zinc Oxide-Based Phototransistors for Visible Light Detection,” ACS Applied Materials and Interfaces, Vol. 10, pp. 7223-7230 (2018).
    [44] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, “High-mobility thin-film transistor with amorphous In Ga Zn O 4 channel fabricated by room temperature rf-magetron sputtering,” Applied Physics Letters, Vol. 89, pp. 112123 (2006).
    [45] A. Suresh, P. Wellenius, A. Dhawan, J. Muth, “Room temperature pulsed laser deposited indium gallium zinc oxide channel based transparent thin film transistors. Applied Physics Letters, Vol. 90, pp. 123512 (2007).
    [46] T. Kamiya, K. Nomura, H. Hosono, “Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping,” Journal of Displays Technology, Vol. 5, pp. 273-288 (2009).
    [47] M. Mativenga, M.H. Choi, J.W. Choi, J. Jang, “Transparent Flexible Circuits Based on Amorphous-Indium-gallium-Zinc-Oxide Thin-Film Transistors. IEEE Electron Device Letters, Vol. 32, No. 2, pp. 170-172 (2011).
    [48] T. Pan, C. Chen, J. Liu, J. Her, K. Koyama, “Electrical and Reliability Characteristics of High-k HoTiO3 a-InGaZnO Thin-Film Transistors,” IEEE Electron Device Letters, Vol. 35, pp. 66-68 (2014).
    [49] J. C. Park, I. Cho, E. Cho, D. H. Kim, C. Jeong, H. Kwon, “Comparative Study of ZrO2 and HfO2 as a High-k Dielectric for Amorphous InGaZnO Thin Film Transistors,” Journal of Nanoelectronics and Optoelectronics, Vol. 9, pp. 67-70 (2014).
    [50] H. Kim, P. C. Mclntyre, K. C. Saraswat, “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition. Applied Physics Letters, Vol. 82, pp. 106 (2003).
    [51] H. Hu, C. Zhu, Y. Lu, Y. H. Wu, T. Liew, M. F. Li, B.J. Cho, W. K. Choi, N. Yakovlev, “Physical and electrical characterization of HfO2 metal-insulator-metal capacitors for Si analog circuit applications,” Journal Applied Physics, Vol. 94, pp. 551 (2003).
    [52] Y. Lin and J. Chou, “Temperature Effects on a-IGZO Thin Film Transistors Using HfO2 Gate Dielectric Material,” Journal of Nanomaterials, Vol. 2014, pp. 347858 (2014).
    [53] D. Son, D. Kim, S. Sung, E. Jung, J. Kang, “High performance and the low voltage operating InGaZnO thin film transistor,” Current Applied Physics, Vol. 10, pp. e157-e160 (2010).
    [54] X. D. Huang, J. Q. Song, P. T. Lai, “Improved Stability of a-InGaZnO Thin-Film Transistor under Positive Gate Bias Stress by Using Fluorine Plasma Treatment,” IEEE Electron Device Letters, Vol. 38, pp. 576-579 (2017).
    [55] X. Liu, L. L. Wang, H. Hu, X. Lu, K. Wang, G. Wang, S. Zhang, “Performance and Stability Improvements of Back-Channel-Etched Amorphous Indium-Gallium-Zinc Thin-Film Transistors by CF4+O2 Plasma Treatment. IEEE Electron Device Letters, Vol. 36, pp. 911-913 (2015).
    [56] L. Z. Qian, P. T. Lai, “Fluorinated InGaZnO Thin-Film Transistor with HfLaO Gate Dielectric,” IEEE Electron Device Letters, Vol. 35, pp. 363-365 (2014).
    [57] J. Jiang, T. Toda, M. P. Hing, D. Wang, M. Furuta, “Highly stable fluorine-passivated In-Ga-Zn-O thin-film transistors under positive gate bias and temperature stress,” Applied Physics Express, Vol. 7, pp.114103 (2014).
    [58] H. Yamazaki, Y. Ishikawa, M. Fujii, Y. Ueoka, M. Fujiwara, E. Takahashi, Y. Andoh, N. Maejima, H. Matsui, F. Matsui, H. Daimon, Y. Uraoka, “The Influence of Fluorinated Silicon Nitride Gate Insulator on Positive Bias Stability toward Highly Reliability Amorphous InGaZnO Thin-Film Transistors,” ECS Journal of Solid State Science and Technology, Vol. 3, pp. Q20-Q23 (2014).
    [59] J. Jiang, M. Furuta, D. Wang, “Self-Aligned Bottom-Gate In-Ga-Zn-O Thin-Film Transistor with Source/Drain Regions Formed by Direct Deposition of Fluorinated Silicon Nitride,” IEEE Electron Device Letters, Vol. 35, pp. 933-935 (2014).
    [60] M. Furuta, J. Jiang, M. P. Hung, T. Toda, D. Wang, G. Tatsuoka, ”Suppression of Negative Gate Bias and Illumination Stress Degradation by Fluorine-Passivated In-Ga-Zn-O Thin-Film Transistors,” ECS Journal of Solid State Science and Technology, Vol. 5, pp. Q88-Q91 (2016).
    [61] J. K. Um, S. Lee, S. Jin, M. Mativenga, S. Y. Oh, C. H. Lee, J. Jang, “High-Performance Homojunction a-IGZO TFTs With Selectively Defined Low-Resistive a-IGZO Source/Drain Electrodes,” IEEE Transactions on Electron Devices, Vol. 62, pp. 2212-2217 (2015).
    [62] J. Seo, J. Jeon, Y. H. Hwang, H. Park, M. Ryu, S. K. Park, B. Bae, “Solution-Processed Flexible Fluorine-doped Indium Zinc Oxide Thin-Film Transistors Fabricated on Plastic Film at Low Temperature,” Scientific Reports, Vol. 3, pp. 2085 (2013).
    [63] G. F. Banuerfeldt, G. Arbilla, “Kinetic Analysis of the Chenical Processes in the Decomposition of Gaseous Dielectrics by a Non-Equilibrium Plasma-Part1:CF4 and CF4/O2,” Journal of the Brazilian Chemical Society, Vol. 11, pp. 121-128 (2000).
    [64] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, “Temperature-Dependent Transfer Characteristics of Amorphous InGaZnO4 Thin-Film Transistors,” Japanese Journal of Applied Physics, Vol. 48, pp. 011301 (2009).
    [65] M. Kimura, T. Kamiya, T. Nakanishi, K. Nomura, and H. Hosono, “Intrinsic carrier mobility in amorphous In–Ga–Zn–O thin-film transistors determined by combined field-effect technique,” Applied Physics Letters, Vol. 96, pp. 262105 (2010).
    [66] S. Hayashi, S. Morisaki, T. Kamikura, S. Yamamoto, K. Sakaike, M. Akazawa, and S. Higashi, “Investigation of silicon grain structure and electrical characteristics of TFTs fabricated using different crystallized silicon films by atmospheric pressure micro-thermal-plasma-jet irradiation,” Japanese Journal of Applied Physics, Vol. 53, pp. 03DG02 (2014).
    [67] J. H. Park, H. Y. Kim, and S. K. Joo, “Leakage Current Reduction Using 350-nm Ultra-Violet Irradiation in P-Channel Polycrystalline-Silicon Thin-Film Transistors,” IEEE Transactions on Device and Materials Reliability, Vol. 15, pp. 82-85 (2015).
    [68] M. S. Ram and D. B. Abdi, “Single Grain Boundary Tunnel Field Effect Transistors on Recrystallized Polycrystalline Silicon: Proposal and Investigation,” IEEE Electron Device Letters, Vol. 35, No. 10, pp. 989-991 (2014).
    [69] J. S. Na and O. K. Kwon, “Pixel structures to compensate nonuniform threshold voltage and mobility of polycrystalline silicon thin-film transistors using subthreshold current for large-size active matrix organic light-emitting diode displays,” Japanese Journal of Applied Physics, Vol. 53, pp. 03CD02 (2014).
    [70] C. L. Fan, H. W. Chen, H. L. Lai, B. L. Guo, and B. R. Huang, “Improvement in Brightness Uniformity by Compensating for the Threshold Voltages of Both the Driving Thin-Film Transistor and the Organic Light-Emitting Diode for Active-Matrix Organic Light-Emitting Diode Displays,” International Journal of Photoenergy, Vol. 2014, pp. 604286 (2014).
    [71] J. S. Park, J. K. Jeong, H. J. Chung, T. G. Mo, and H. D. Kim, “Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water,” Applied Physics Letters, 92, 072104 (2008).
    [72] D. Kang, H. Lim, C. Kim, I. Song, J. Park, Y. Park, and J. Chung, “Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules,” Applied Physics Letters, Vol. 90, pp. 192101 (2007).
    [73] K. Nomura, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2 annealing,” Applied Physics Letters, Vol. 93, pp. 192107 (2008).
    [74] M. Furuta, Y. Kamada, M. Kimura, T. Hiramatsu, T. Matsuda, H. Furuta, C. Li, S. Fujita, and T. Hirao, “Analysis of Hump Characteristics in Thin-Film Transistors With ZnO Channels Deposited by Sputtering at Various Oxygen Partial Pressures,” IEEE Electron Device Letters, Vol. 31, No. 11, pp. 1257-1259 (2010).
    [75] J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, and H. D. Kim, “Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors,” Applied Physics Letters, Vol. 93, pp. 123508 (2008).
    [76] P. K. Nayak, Z. Wang, D. H. Anjum, M. N. Hedhili, and H. N. Alshareef, “Highly stable thin film transistors using multilayer channel structure,” Applied Physics Letters, Vol. 106, pp. 103505 (2015).
    [77] K. H. Lee, J. S. Jung, K. S. Son, J. S. Park, T. S. Kim, R. Choi, J. K. Jeong, J. Y. Kwon, B. Koo, and S. Lee, “The effect of moisture on the photon-enhanced negative bias thermal instability in Ga–In–Zn–O thin film transistors,” Applied Physics Letters, Vol. 95, pp. 232106 (2009).
    [78] S. Y. Sung, J. H. Choi, U. B. Han, K. C. Lee, J. H. Lee, J. J. Kim, W. Lim, S. J. Pearton, D.P. Norton, and Y. W. Heo, “Effects of ambient atmosphere on the transfer characteristics and gate-bias stress stability of amorphous indium-gallium-zinc oxide thin-film transistors,” Applied Physics Letters, Vol. 96, pp. 102107 (2010).
    [79] S. H. Choi, J. H. Jang, J. J. Kim, and M. K. Han, “Low-Temperature Organic (CYTOP) Passivation for Improvement of Electric Characteristics and Reliability in IGZO TFTs,” IEEE Electron Device Letters, Vol. 33, No. 3, pp. 381-383 (2012).
    [80] D. H. Kang, I. Kang, S. H. Ryu, Y. S. Ahn, and J. Jang, ” Effect of SiO2 and/or SiNx Passivation Layer on Thermal Stability of Self-Aligned Coplanar Amorphous Indium–Gallium–Zinc–Oxide Thin-Film Transistors,” Journal of Display Technology, Vol. 9, No. 9, pp. 699-703 (2013).
    [81] C. L. Fan, M. C. Shang, B. J. Li, Y. Z. Lin, S. J. Wang, W. D. Lee, and B. R. Hung, “Teflon/SiO2 Bilayer Passivation for Improving the Electrical Reliability of Oxide TFTs Fabricated Using a New Two-Photomask Self-Alignment Process,” Materials, Vol. 8, pp. 1704 (2015).
    [82] C. L. Fan, M. C. Shang, B. J. Li, Y. Z. Lin, S. J. Wang, and W. D. Lee, “A Self-Aligned a-IGZO Thin-Film Transistor Using a New Two-Photo-Mask Process with a Continuous Etching Scheme,” Materials, Vol. 7, pp. 5761 (2014).
    [83] J. H. Shin, J. S. Lee, C. S. Hwang, S. H. K. Park, W. S. Cheong, M. Ryu, C. W. Byun, J. I. Lee, and H. Y. Chu, “Light Effects on the Bias Stability of Transparent ZnO Thin Film Transistors,” ETRI Journal, Vol. 31, pp. 62 (2009).
    [84] Y. Tai, B. Chen, Y. Kuo, Chun, Tsai, K. Chiang, Y. Wei, H. Cheng, “A new pixel circuit for driving organic light-emitting diodes with low temperature polycrystalline silicon thin-film transistors,” Journal of Display Technology, Vol. 1, pp. 100-104 (2005).
    [85] M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S.I. Seki, S. Miyashita, T. Shimoda, T. Ozawa, K. Kitawada, T. Nakazawa, W. Miyazawa, H. Ohshima, “Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display,” IEEE Transactions on Electron Devices, Vol. 46, pp. 2282-2288 (1999).
    [86] T. F. Chen, C. F. Yeh, J. C. Lou, “Investigation of grain boundary control in the drain junction on laser-crystalized poly-Si thin film transistors,” IEEE Electron Device Letters, Vol. 24, pp. 457-459 (2003).
    [87] S. H. Jung, W. J. Nam, M. K. Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Letters, Vol. 25, pp. 690-692 (2004).
    [88] C. L. Lin and Y. C. Chen, “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED, IEEE Electron Device Letters, Vol. 28, pp. 129-131 (2007).
    [89] S. Ono, K. Miwa, Y. Maekawa, T. Tsujimura, “VT compensation circuit for AMOLED displays composed of two TFTs and one capacitor,” IEEE Transactions on Electron Devices, Vol. 54, pp. 462-467 (2007).
    [90] W. J. Wu, L. Zhou, R. H. Yao, J. B. Peng, “A new voltage-programmed pixel circuit for enhancing the uniformity of AMOLED displays,” IEEE Electron Device Letters, Vol. 32, pp. 931-933 (2011).
    [91] H. J. In and O. K. Kwon, “Novel driving method for two-dimensional and three-dimensional switchable active matrix organic light-emitting diode displays for emission and programming time extension,” Japanese Journal of Applied Physics, Vol. 51, pp. 03CD03 (2012).
    [92] C. L. Lin, C. C. Hung, P. Y. Kuo, and M. H. Cheng, “New LTPS pixel circuit with AC driving method to reduce OLED degradation for 3D AMOLED displays,” Journal of Display Technology, 8 (2012) 681-683.
    [93] S. J. Ashtiani, G. R. Chaji, and A. Nathan, “AMOLED pixel circuit with electronic compensation of luminance degradation,” Journal of Display Technology, Vol. 3, pp. 36-39 (2007).
    [94] H. J. In, O. K. Kwon, “External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays,” IEEE Electron Device Letters, Vol. 30, pp. 377-379 (2009).
    [95] Y. C. Lin, H. P. D. Shieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Letters, Vol. 25, pp. 728-730 (2004).
    [96] Y. Si, L. Lang, Y. Zhao, X. Chen, S. Liu, “Improvement of pixel electrode circuit for active-matrix OLED by application of reversed-biased voltage,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 52, pp. 856-859 (2005).
    [97] C. L. Lin, K. W. Chou, C. C. Hung, C. D. Tu, “Lifetime amelioration for an AMOLED pixel circuit by using a novel ac driving scheme,” IEEE Transactions on Electron Devices, Vol. 58, pp. 2652-2659 (2011).
    [98] I. Nam and D. H. Woo, “Poly-Si active matrix organic light-emitting diode pixel circuit with compensation for threshold voltage and mobility variations,” Electronics Letters, Vol. 50, pp. 934-935 (2014).
    [99] Y. Kim, Y. Kim, H. Lee, “A novel p-type LTPS TFT pixel circuit compensating for threshold voltage and mobility variations,” Journal of Display Technology, Vol. 10, pp. 995-1000 (2014).
    [100] A. Khosropour and A. Sazonov, “Microcrystalline Silicon Photodiode For Large Area NIR Light Detection Application. IEEE Electron Device Letters, Vol. 38, pp. 225-227 (2017).
    [101] J. Chen, M. Zhu, “Performance optimization for Pnp InGaAs/InP heterojunction phototransistors,” Applied Physics A, Vol. 122, pp. 1034 (2016).
    [102] G. Chang, R. Basu, B. Mukhopadhyay, P. K. Basu, “Design and Modeling of GeSn-Based Heterojunction Phototransistors for Communication Applications,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 22, pp. 8200409 (2016).
    [103] Y. Wen, L. Yin, P. He, Z. Wang, X. Zhang, Q. Wang, T. A. Shifa, K. Xu, F. Wang, X. Zhan, F. Wang, C. Jiang, J. He, “Integrated High-Performance Infrared Phototransistor Arrays Composed of Nonlayered PbS-MoS2 Heterostructures with Edge Contacts,” Nano Letters, Vol. 16, pp. 6437-6444 (2016).
    [104] J. Li, S. Chang, M. Hsu, S. Chang, “High Responsivity MgZnO Ultraviolet Thin-Film Phototransistor Developed Using Radio Frequency Sputtering,” Materials, Vol. 10, pp. 126 (2017).
    [105] J. Choi, J. Park, K. Lim, N. Cho, J. Lee, S. Jeon, Y. S. Kim, “Photosensitivity of InZnO thin-film transistors using a solution process,” Applied Physics Letters, Vol. 109, pp. 132105 (2016).
    [106] M. G. Yun, Y. Kim, C. H. Ahn, S. W. Cho, W. J. Kang, H. K. Cho, Y. Kim, “Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process,” Scientific Reports, Vol. 6, pp. 31991 (2016).
    [107] S. Knobelspies, A. Daus, G. Cantarella, L. Petti, N. Munzenneder, G. Troster, G. A. Salvatore, “Flexible a-IGZO Phototransistor for Instantaneousand Cumulative UV-Exposure Monitoring for Skin Health,” Advanced Electronic Materials, Vol. 2, pp. 1600273 (2016).
    [108] J. T. Jang, J. Park, B. D. Ahn, D. M. Kim, S. Choi, H. Kim, D. H. Kim, “Study on the Photoresponse of Amorphous In-Ga-Zn-O and Zinc Oxynitride Semiconductor Devices by the Extraction of Sub-Gap-State Distribution and Device Simulation,” ACS Applied Materials and Interfaces, Vol. 7, pp. 15570-11577 (2015).
    [109] J. Noh, H. Kim, H. Nahm, Y. Kim, D. H. Kim, B. Ahn, J. Lim, G. H. Kim, J. Lee, J. Song, ”Cation composition effects on electronic structures of In-Sn-Zn-O amorphous semiconductors. Journal of Applied Physics, Vol. 113, pp. 183706 (2013).
    [110] J. H. Song, K. S. Kim, Y. G. Mo, R. Choi, J. K. Jeong, “Achieving High field-Effect Mobility Exceeding 50 cm2/Vs in In-Zn-Sn-O Thin-Film Transistors,” IEEE Electron Device Letters, Vol. 35, pp. 853-855 (2014).
    [111] P. Liu, C. Chang, C. Fuh, “Enhancement of reliability and stability for transparent amorphous indium-zinc-tin-oxide thin film transistors,” RSC Advances, Vol. 6, pp. 106374-106379 (2016).
    [112] P. Sharma, R. Bhardwaj, A. Kumar, S. Mukherjee, “Trap Assisted Charge Multiplication Enhanced Photoresponse of Li-P codoped p-ZnO/n-Si Heterojunction Ultraviolet Photodetectors,” Journal of Physics D: Applied Physics, Vol. 51, pp. 015103, (2017).

    無法下載圖示 全文公開日期 2023/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE