簡易檢索 / 詳目顯示

研究生: 周培傑
Pei-Chieh Chou
論文名稱: 應用於低電壓驅動及高解析度主動式矩陣有機發光二極體顯示器之新式畫素補償電路設計
New Compensating Pixel Circuit Design for Low-Voltage Driving and High-Resolution AMOLED Displays
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 范慶麟
劉舜維
顏文正
李志堅
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 80
中文關鍵詞: 主動式矩陣有機發光二極體非晶氧化銦鋅錫畫素補償電路低電壓驅動
外文關鍵詞: Active-matrix organic light-emitting diode (AMOLED), amorphous indium–zinc–tin oxide (a-IZTO), compensating pixel circuit, low-voltage driving
相關次數: 點閱:345下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,主動式有機發光二極體顯示器由於擁有比傳統液晶顯示器更高的對比度、更快速的反應時間、更低的消耗功率以及更寬廣的視角而成為顯示器市場的焦點。主動式有機發光二極體的畫素電路有三個主要的背板技術,包含非晶矽薄膜電晶體、低溫多晶矽薄膜電晶體、非晶氧化物半導體薄膜電晶體。自從第一篇使用非晶氧化銦鎵鋅作為主動層的薄膜電晶體文獻發表後,非晶氧化物半導體材料越來越被受到重視,因為它相比非晶矽薄膜電晶體有著更高的載子遷移率,且在製程上比起低溫多晶矽薄膜電晶體有更良好的均勻性。然而,由於非晶氧化銦鎵鋅作為主動層的薄膜電晶體的載子遷移率是不足以應用於未來超高畫質顯示器以及低電壓驅動的攜帶型裝置,因此非晶氧化銦鋅錫薄膜電晶體被認為是可以實現高載子遷移率的非晶氧化物半導體薄膜電晶體。儘管非晶氧化銦鋅錫薄膜電晶體在電性上有良好的表現,但在閘極偏壓電應力下之臨界電壓不穩定性以及在製程上造成載子遷移率的不均勻仍然是需要被克服的問題。
    迄今為止,有許多畫素電路的補償架構被提出來解決薄膜電晶體臨界電壓變異的問題。然而,薄膜電晶體載子遷移率的變異、有機發光二極體的老化以及電壓源產生的電壓降並沒有被考慮到。除此之外,被提出的畫素電路中很少提供逆偏壓以增加有機發光二極體的壽命。因此,本論文針對不同的顯示器尺寸和應用提出了兩個畫素補償電路。
    第一個提出的 5T2C 電路使用非晶氧化銦鋅錫薄膜電晶體,為小尺寸攜帶式主動式有機發光二極體顯示器而設計,針對薄膜電晶體臨界電壓的變異、電壓源產生的電壓降以及有機發光二極體的老化做補償,且防止了電路補償過程中可能產生的畫面閃爍現象。在低電壓驅動的情況下,畫素電路可以應用於實際的攜帶式裝置上。第二個是應用於中尺寸高解析度主動式有機發光二極體顯示器的 4T2C 畫素電路。此電路可以補償薄膜電晶體臨界電壓與載子遷移率的變異、電壓源所產生的電壓降以及有機發光二極體的老化。除此之外,此畫素電路提供逆偏壓以抑制有機發光二極體的老化。


    Recently, active-matrix organic light-emitting diode (AMOLED) displays have been focused in display markets because its higher contrast ratio, faster response time, lower power consumption, and wider viewing angles over conventional liquid crystal displays (LCDs). For AMOLED pixel circuits, there are three main backplane technologies, which are amorphous-silicon (a-Si) thin-film transistor (TFT), low-temperature polycrystalline-silicon (LTPS) TFT and amorphous oxide semiconductor (AOS) TFT. Since the first report of TFT with amorphous indium-gallium-zinc-oxide (a-IGZO) as a channel layer, the AOS materials have attracted more and more attentions because of their higher mobility comparing to a-Si TFTs and better uniformity comparing to LTPS TFTs. However, because the mobility of TFT with a-IGZO thin film as a channel layer is not high enough for future ultra-high definition (UHD) displays and low-voltage driving portable applications, amorphous indium-zinc-tin oxide (a-IZTO) TFT had been reported to achieve high mobility AOS TFT. Although a-IZTO TFT offers prominent device performance, its threshold voltage instability under gate voltage bias-stress and mobility non-uniformity during the TFT fabrication still remains as problems to be used for AMOLED displays.
    To date, several compensating pixel circuit have been proposed to solve the problems of threshold voltage (VTH) variation of TFT. Nevertheless, the mobility variation of TFT, OLED degradation, and I-R drop of power line (VDD) are not considered. Additionally, less of the pixel circuits provide a reverse-bias to increase lifetime of OLED. Thus, this thesis proposes two compensating pixel circuits for different display sizes and applications.
    The first 5T2C pixel circuit using a-IZTO TFTs are design for portable AMOLED displays with compensating for VTH variation of TFT (VTH_TFT)/I-R drop of power line/OLED degradation. Moreover, the circuit prevents the displays from flicker. With low-voltage driving, the pixel circuit is useful to be used in real portable applications. The second 4T2C pixel circuit is for high resolution medium-sized AMOLED displays. The pixel circuit can compensate the VTH_TFT, mobility variation of TFT, I-R drop of VDD and OLED degradation. Moreover, the pixel circuit provides a reverse bias to suppress the aging of OLED.

    Abstract (in Chinese) i Abstract iii Acknowledgement (in Chinese) v Contents vi List of Figures ix List of Tables xii Chapter 1 Introduction 1 1.1 Background 1 1.2 OLED Structure and Operation 4 1.3 Driving Method 6 1.3.1 Passive-matrix OLED (PMOLED) 6 1.3.2 Active-matrix OLED (AMOLED) 7 1.4 Three-dimension Displays 9 1.4.1 Overview of 3D Technology 9 1.4.2 Stereoscopic Displays 10 1.4.3 Emission Driving Scheme 12 1.5 Motivation 13 1.6 Thesis Organization 14 Chapter 2 Driving Device and Compensation Method for AMOLED Pixel Circuit 16 2.1 Driving Device 16 2.1.1 a-Si TFT 16 2.1.2 LTPS TFT 17 2.1.3 AOS TFT 17 2.2 AIM-SPICE and Device Modeling 18 2.2.1 AIM-SPICE 18 2.2.2 Device Modeling 19 2.3 Compensation for AMOLED 21 2.3.1 Threshold Voltage 23 2.3.2 OLED Degradation 25 2.3.3 Voltage Drop of the Power Line 26 2.3.4 Mobility 27 Chapter 3 New Low-Voltage Driving AMOLED Compensating Pixel Circuit Based on High-Mobility a-IZTO TFTs for High-Resolution Portable Displays 29 3.1 Introduction 29 3.2 TFT Fabrication and Characterization 31 3.3 Circuit Scheme and Operation 32 3.4 Simulation Results and Discussion 38 3.5 Summary 46 Chapter 4 A Novel Pixel Circuit to Compensate for Mobility Variation of a-IZTO TFTs for High Performance UHD AMOLED Displays 47 4.1 Introduction 47 4.2 Circuit Scheme and Operation 49 4.3 Simulation Results and Discussion 55 4.4 Summary 65 Chapter 5 Conclusion and Future Work 66 5.1 Conclusion 66 5.2 Future Work 68 REFERENCE 69

    [1] R. Mertens, The OLED Handbook: A Guide to OLED Technology, Industry & Market, OLED-Info, Mar. 2018.
    [2] R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., pp. 875–878, Dec. 1998
    [3] M. Stewart, R. S. Howell, L. Pires, M. K. Hatails, W. Howard, and O. Prache, “Polysilicon VGA active matrix OLED displays-technology and performance,” in IEDM Tech. Dig., pp. 871-874, Dec. 1998
    [4] G. Cheng, F. Li, Y. Duan, J. Feng, S. Liu, S. Qiu, D. Lin, Y. Ma, and S. T. Lee, "White organic light-emitting devices using a phosphorescent sensitizer," Appl. Phys. Lett., vol. 82, no. 24, pp. 4224-4226, Jun. 2003.
    [5] Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan, and D. Striakhilev, "Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic," IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1477-1486, Sep. 2004.
    [6] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Appl. Phys. Lett., vol. 51, no. 12, pp. 913-915, Oct. 1987.
    [7] http://www.lg.com/tw
    [8] https://www.apple.com/tw/
    [9] H. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl., vol. 7, 17168, Mar. 2018.
    [10] B. Geffroy, P. I. Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int., vol. 55, no 6, pp. 572–582, Jun. 2006.
    [11] N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, "Three-Dimensional Displays: A Review and Applications Analysis," IEEE Trans. Broadcast., vol. 57, no. 2, pp. 362-371, Apr. 2011.
    [12] H. Urey, K. V. Chellappan, E. Erden, and P. Surman, "State of the Art in Stereoscopic and Autostereoscopic Displays," Proc. IEEE Inst. Electr. Electron Eng., vol. 99, no. 4, pp. 540-555, Apr. 2011.
    [13] J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen, and B. Lee, "Three-dimensional display technologies of recent interest Principles, status, and issues," Appl. Opt., vol. 50, no. 34, pp. 87-115, Dec. 2011.
    [14] P. Fuchs, Virtual Reality Headsets - A Theoretical and Pragmatic Approach, CRC Press, Feb. 2017.
    [15] E. Lueder, 3D Displays, John Wiley & Sons, Jan. 2012.
    [16] B. W. Lee, I. H. Ji, S. M. Han, S. D. Sung, K. D. Shin, J. D. Lee, B. H. Kim, B. H. Berkeley, and S. S. Kim, "Novel Simultaneous Emission Driving Scheme for Crosstalk-free 3D AMOLED TV," J. Soc. Inf. Disp., vol. 41, no. 1, pp. 758-761, May. 2010.
    [17] C. L. Lin, C. C. Hung, W. Y. Chang, K. W. Chou, and C. Y. Chuang, “Novel a-Si:H AMOLED pixel circuit to ameliorate OLED luminance degradation by external detection,” IEEE Electron Device Lett., vol. 32, no. 12, pp. 1716–1718, Dec. 2011.
    [18] Z. Hu, L. L. Wang, C. Liao, L. Zeng, C.-Y. Lee, A. Lien, and S. Zhang, “Threshold voltage shift effect of a-Si:H TFTs under bipolar pulse bias,” IEEE Trans. Electron Devices, vol. 62, no. 12, pp. 4037–4043, Dec. 2015.
    [19] Y. Morimoto, Y. Jinno, K. Hirai, H. Ogata, T. Yamada, and K. Yoneda, “Influence of the grain boundaries and intragrain defects on the performance of poly-Si thin film transistors,” J. Electrochem. Soc., vol. 144, no. 7, pp. 2495–2501, Jul. 1997.
    [20] J. S. Lee, S. Chang, S. M. Koo, and S. Y. Lee, “High-performance a-IGZO TFT with ZrO2 gate dielectric fabricated at room temperature,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 225–227, Mar. 2010.
    [21] H. S. Seo, J. U. Bae, D. W. Kim, C. I. Ryoo, I. K. Kang, S. Y. Min, Y. Y. Kim, J. S. Han, C. D. Kim, Y. K. Hwang, and I. J. Chung, “Development of highly stable a-IGZO TFT with TiOx as a passivation layer for active-matrix display,” in SID Symp. Tech. Dig., pp.1132–1135, May. 2010.
    [22] C. L. Lin, P. S. Chen, P.C. Lai, T. C. Chu, M. X. Wang, and C. L. Lee, "Novel Pixel Circuit With Compensation for Normally-OFF/ON a-IGZO TFTs and OLED Luminance Degradation," J. Display Technol., vol. 12, no. 12, pp. 1664-1667, Dec. 2016.
    [23] C. L. Lin, P. C. Lai, P.C. Lai, P. S. Chen, and W. L. Wu, "Pixel Circuit With Parallel Driving Scheme for Compensating Luminance Variation Based on a-IGZO TFT for AMOLED Displays," J. Display Technol., vol. 12, no. 12, pp. 1681-1687, Dec. 2016.
    [24] C. L. Lin, C. C. Hung, P. Y. Kuo, and M. H. Cheng, “New LTPS pixel circuit with AC driving method to reduce OLED degradation for 3D AMOLED displays,” J. Display Technol., vol. 8, no. 12, pp. 681–683, Dec. 2012.
    [25] C. L. Lin, W. Y. Chang, and C. C. Hung, “LTPS-TFT Pixel Circuit to Compensate for OLED Luminance Degradation in Three-Dimensional AMOLED Display,” IEEE Electron Device Lett., vol. 33, no. 5, pp. 700-702, May 2012.
    [26] C. L. Lin, C. C. Hsu, P. S. Chen, P. C. Lai, P. T. Lee, and P. Y. Kuo, “Supperessing VTH varations in LTPS thin-film transistors with current scaling ratio modulation for AMOLED display,” IEEE Trans. Electron Devices, vol. 65, no. 8, pp. 3577-3581, Jul. 2018.
    [27] C. L. Fan, C. Y. Chen, F. P. Tseng, C. C. Yang, K. E. Chien, and Y. H. Hsiao, "3T0.5C Compensating pixel circuit with all p-type LTPS-TFTs for AMOLED displays," Displays, vol. 53, pp.8-13, Jul. 2018.
    [28] Z. Huang, L. Tian, H. Wang, and S. Feng, "A novel voltage-programmed pixel circuit with poly-Si TFTs for AMOLED displays," J. Circuits Syst. Comput., Apr. 2018.
    [29] C. L. Lin, C. C. Hung, P. C. Lai, and W. Y. Chang, “A new a-IGZO AMOLED pixel circuit design to improve the OLED luminance degradation in 3D displays,” in SID Symp. Dig. Tech., vol. 44, pp. 1107–1109, Jul. 2013.
    [30] C. L. Lin, F. H. Chen, C. C. Hung, P. S. Chen, M. Y. Deng, C. M. Lu, and T. H. Huang, “New a-IGZO pixel circuit composed of three transistors and one capacitor for use in high-speed-scan AMOLED displays,” J. Display Technol., vol. 11, no. 12, pp. 1031–1034, Dec. 2015.
    [31] C. L. Lin, W. Y. Chang, and C. C. Hung, "Compensating pixel circuit driving AMOLED display with a-IGZO TFTs," IEEE Electron Device Lett., vol. 34, no. 9, pp. 1166–1168, Sep. 2013.
    [32] C. L. Fan, F. P. Tseng, and C. Y. Tseng, “Electrical performance and reliability improvement of amorphous-indium-gallium-zinc-oxide thin-film transistors with HfO2 gate dielectrics by CF4 plasma treatment,” Materials, vol. 11, no. 5, p. 824, May 2018.
    [33] J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao, and H. H. Lee, “Comparison of a-Si and poly-Si for AMOLED displays,” J. Soc. Inf. Display, vol. 12, no. 4, pp. 367–371, Dec. 2004.
    [34] M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S. I. Seki, S. Miyashita, T. Shimoda, T. Ozawa, K. Kitawada, T. Nakazawa, W. Miyazawa, and H. Ohshima, "Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display," IEEE Trans. Electron Devices, vol. 46, no. 12, pp. 2282-2288, Dec. 1999.
    [35] S. W. Lee and S. K. Joo, "Low temperature poly-si thin-film transistor fabrication by metal-induced lateral crystallization," IEEE Electron Device Lett., vol. 17, no. 4, pp.160-162, May 1996.
    [36] T. Kamiya, K. Nomura, and H. Hosono, "Present status of amorphous In-Ga-Zn-O thin film transistors," Sci. Technol. Adv. Mater., vol. 11, no. 4, Aug. 2010.
    [37] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thinfilm transistors,” Jpn. J. Appl. Phys., vol. 45, no. 5B, pp. 4303–4308, May 2006.
    [38] E. Fortunato, P. Barquinha, and R. Martins, "Oxide Semiconductor Thin-Film Transistors A Review of Recent Advances," Adv. Mater., vol. 24, no. 22, pp. 2945-2986, May 2012.
    [39] J. H. Lee, J. H. Kim, and M. K. Han, "A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED," IEEE Electron Device Lett., vol. 26, no. 12, pp. 897-899, Dec. 2005.
    [40] A. Nathan, G. R. Chaji, and S. J. Ashtiani, “Driving schemes for a-Si and LTPS AMOLED displays,” J. Display Technol., vol. 1, no. 2, pp. 267–277, Dec. 2005.
    [41] C. L. Lin, J. H. Chang, P. C. Lai , L. W. Shih, S. C. Chen, and M. H. Cheng, “Pixel Circuit With Leakage Prevention Scheme for Low-Frame-Rate AMOLED Displays,” IEEE J. Electron Devices Soc., Vol. 8, pp. 235–240, Nov. 2020.
    [42] S. H. Jung, W. J. Nam, and M. K. Han, "A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in Poly-Si TFTs," IEEE Electron Device Lett., vol. 25, no. 10, pp. 690-692, Oct. 2004.
    [43] D. Geng, D. H. Kang, M. J. Seok, M. Mativenga, and J. Jang, “High-speed and low-voltage-driven shift register with self-aligned coplanar a-IGZO TFTs,” IEEE Electron Device Lett., vol. 33, no. 7, pp. 1012–1014, Jul. 2012.
    [44] Y. J. Park, M. H. Jung, S. H. Park, and O. Kim, “Voltage-programming-based pixel circuit to compensate for threshold voltage and mobility using natural capacitance of organic light-emitting diode,” Jpn. J. Appl. Phys., vol. 49, no. 3, p. 03C D01, Mar. 2010.
    [45] S. Ono, K. Miwa, K. Maekawa, and T. Tsujimura, "VT Compensation Circuit for AMOLED Displays Composed of Two TFTs and One Capacitor," IEEE Trans. Electron Devices, vol. 54, no. 3, pp. 462-467, Mar. 2007.
    [46] G. Gu and S. R. Forrest, "Design of flat-panel displays based on organic light-emitting devices," IEEE J. Sel. Top. Quantum Electron, vol. 4, no. 1, pp. 83-99, Jan. 1998.
    [47] J. H. Lee, W. J. Nam, S. H. Jung, and M. K. Han, "A new current scaling pixel circuit for AMOLED," IEEE Electron Device Lett., vol. 25, no. 5, pp. 280-282, May 2004.
    [48] J. H. Lee, W. J. Nam, B. K. Kim, H. S. Choi, Y. M. Ha, and M. K. Han, "A new poly-Si TFT current-mirror pixel for active matrix organic light emitting diode," IEEE Electron Device Lett., vol. 27, no. 10, pp. 830-833, Nov. 2006.
    [49] J. Y. Jeon, Y. J. Jeon, Y. S. Son, and G. H. Cho, "A direct fast feedback current driver using an inverting amplifier for high-quality AMOLED displays," IEEE Trans. Circuits Syst. II Express Briefs, vol. 59, no. 7, pp. 414417, Jul. 2012.
    [50] C. L. Fan, Y. Y. Lin, B. S. Lin, J. Y. Chang, and H. C. Chang, "New pixel circuit compensating poly-si TFT threshold-voltage shift for a driving AMOLED," J. Korean Phys. Soc., vol. 55, no. 4, pp. 1185-1189, Apr. 2010.
    [51] C. L. Fan, F. P. Tseng, H. L. Lai, B. J. Sun, K. C. Chao, and Y. C. Chen, "A novel LTPS TFT pixel circuit to compensate the electronic degradation for active-matrix organic light emitting diode displays," Int. J. Photoenergy, Apr. 2013.
    [52] C. S. Chiang, J. Kanicki, and K. Takechi, "Electrical Instability of Hydrogenated Amorphous Silicon Thin-Film Transistors for Active-Matrix Liquid-Crystal Displays," Jpn. J. Appl. Phys., vol. 37, no. 11, pp. 4704-4710, Sep. 1998.
    [53] M. J. Powell, C. Van Berkel, and J. R. Hughes, "Time and temperature dependence of instability mechanisms in amorphous silicon thin ‐ film transistors," Appl. Phys. Lett., vol. 54, no. 14, pp. 1323-1325, Apr. 1989.
    [54] S. Sambandan and A. Nathan, "Equivalent Circuit Description of Threshold Voltage Shift in a-Si:H TFTs From a Probabilistic Analysis of Carrier Population Dynamics," IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2306-2311, Aug. 2006.
    [55] F. So, Organic Electronics: Materials, Processing, Devices and Applications, CRC Press, Nov. 2009.
    [56] J. Shen, D. Wang, E. Langlois, W. A. Barrow, P. J. Green, C. W. Tang, and J. Shi, "Degradation mechanisms in organic light emitting diodes," Synth. Met., Vols. 111-112, pp. 233-236, Jun. 2000.
    [57] W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, "Device efficiency of organic light-emitting diodes Progress by improved light outcoupling," Phys. Status Solidi, vol. 210, no. 1, pp. 44-65, Jan. 2013.
    [58] D. Zou, M. Yahiro, and T. Tsutsui, "Study on the degradation mechanism of organic light-emitting diodes (OLEDs)," Synth. Met., vol. 91, no. 1-3, pp. 191193, Dec. 1997.
    [59] Y. C. Lin and H. P. D. Shieh, "Improvement of brightness uniformity by AC driving scheme for AMOLED display," IEEE Electron Device Lett., vol. 25, no. 11, pp. 728-730, Nov. 2004.
    [60] C. L. Lin, K. W. Chou, C. C. Hung, and C. D. Tu, "Lifetime amelioration for an AMOLED pixel circuit by using a novel ac driving scheme," IEEE Trans. Electron Devices, vol. 58, pp. 2652–2659, Aug. 2011.
    [61] J. P. Lee, H. S. Jeon, D. S. Moon, and B. S. Bae, "Threshold voltage and IR drop compensation of an AMOLED pixel circuit without a VDD Line," IEEE Electron Devices Lett., vol. 35, no. 1, pp. 72-74, Nov. 2014.
    [62] C. L. Fan, M. C. Shang, W. C. Lin, H. C. Chang, K. C. Chao, and B. L. Guo, "LTPS-TFT pixel circuit compensating for TFT threshold voltage shift and IR-drop on the power line for AMOLED displays," Adv. Mater. Sci. Eng., May 2012.
    [63] Y. Sohn, G. Moon, K. Choi, Y. Kim, and K. Park, “Effects of TFT mobility variation in the threshold voltage compensation circuit of the OLED display,” J. Inf. Display, vol. 18, pp. 25–30, Jan. 2017.
    [64] C. L. Lin, C. C. Hung, P. S. Chen, P. C. Lai, and M. H. Cheng, "New Voltage-Programmed AMOLED Pixel Circuit to Compensate for Nonuniform Electrical Characteristics of LTPS TFTs and Voltage Drop in Power Line, "IEEE Trans. Electron Devices, vol. 61, no. 7, pp. 2454-2458, Jul. 2014.
    [65] C. Wang, Z. Hu, X. He, C. Liao, and S. Zhang, "One gate diode-connected dual-gate a-IGZO TFT driven pixel circuit for active matrix organic light-emitting diode displays," IEEE Trans. Electron Devices, vol. 63, no. 9, pp. 3800-3803, Sep. 2016.
    [66] C. L. Fan, Y. C. Chen, C. C. Yang, Y. K. Tsai, and B. R. Hung, “Novel LTPS-TFT pixel circuit with OLED luminance compensation for 3D AMOLED displays,” J. Display Technol., vol. 12, no. 5, pp. 425–428, May 2016.
    [67] C. L. Lin and Y. C. Chen, “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 2, pp. 129-131, Feb. 2007.
    [68] H. Y. Lu, T. C. Chang, Y. H. Tai, P. T. Liu, and S. Chi, “A new pixel circuit compensating for brightness variation in large size and high resolution AMOLED displays,” J. Display Technol., vol. 3, no. 4, pp. 398–403, Dec. 2007.
    [69] R. Yao, Z. Zheng, M. Xiong, X. Zhang, X. Li, H. Ning, Z. Fang, W. Xie, X. Lu, and J. Peng, “Low-temperature fabrication of sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors,” Appl. Phys. Lett., vol. 112, no. 10, 103503, Mar. 2018.
    [70] H. Xu, M. Li, L. Wang, M. Xu, H. Ning, and J. Peng, “Flexible AMOLED based on oxide TFT with high mobility,” in SID Symp. Dig. Tech., vol. 47, no. 1, pp. 641–643, May. 2016.
    [71] C. S. Fuh, P. T. Liu, W. H. Huang, and S. M. Sze, “Effect of annealing on defect elimination for high mobility amorphous indium-zinc-tin-oxide thin-film transistor,” IEEE Electron Device Lett., vol. 35, no. 11, pp. 1103-1105, Nov. 2014.
    [72] Y. Kim, Y. Kim, and H. Lee, “A novel a-InGaZnO TFT pixel circuit for AMOLED display with the enhanced reliability and aperture ratio,” J. Display Technol., vol. 10, no. 1, pp. 80–83, Jan. 2014.
    [73] C. L. Lin, Y. T. Liu, C. E. Lee, P. S. Chen, T. C. Chu, and C. C. Hung, “a-InGaZnO active-matrix organic LED pixel periodically detecting thin-film transistor threshold voltage once for multiple frames,” IEEE Electron Device Lett., vol. 36, no. 11, pp. 1166–1168, Nov. 2015.
    [74] P. C. Lai, C. L. Lin, and J. Kanicki, “Novel top-anode OLED/a-IGZO TFTs pixel circuit for 8K4K AM-OLEDs,” IEEE Trans. Electron Devices, vol. 66, no. 1, pp. 436–444, Jan. 2019.
    [75] T. K. Chang, C. W. Lin, and S. Chang, “Invited Paper: LTPO TFT technology for AMOLEDs,” in Sco. Inf. Display Symp. Dig. Tech., pp. 545–548, May. 2019.
    [76] H. J. In and O. K. Kwon, “External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays,” IEEE Electron Device Lett., vol. 30, no. 4, pp. 377–379, Apr. 2009.
    [77] D. W. Kim, H. Oh, B. D. Youn, and D. Kwon, “Bivariate lifetime model for organic light-emitting diodes,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 2325–2334, Mar. 2017.
    [78] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, no. 7016, pp. 488-492, Nov. 2004.
    [79] T. C. Fung, K. Abe, H. Kumomi, and J. Kanicki, “Electrical instability of RF sputter amorphous In-Ga-Zn-O thin-film transistors,” J. Display Technol., vol. 5, no. 12, pp. 452–461, Dec. 2009.
    [80] R. Li, S. Dai, J. Su, Y. Ma, Y. Wang, D. Zhou, and X. Zhang, "Effect of thermal annealing on the electrical characteristics of an amorphous ITZO:Li thin film transistor fabricated using the magnetron sputtering method," Mater. Sci. Semicond. Process., vol. 96, pp. 8-11, Jun. 2019.
    [81] Y. Kim, C. Chen, J. Kanicki, and H. Lee, "An a-InGaZnO TFT pixel circuit compensating threshold voltage and mobility variations in AMOLEDs," J. Display Technol., vol. 10, no. 5, pp. 402-406, May. 2014.
    [82] D. Kim, Y. Kim, S. Lee, M. S. Kang, D. H. Kim, and H. J. Lee, "High Resolution a-IGZO TFT Pixel Circuit for Compensating Threshold Voltage Shifts and OLED Degradations," IEEE J. Electron Devices Soc., vol. 5, pp. 372-377, Sep. 2017.
    [83] C. L. Lin, P. S. Chen, M. Y. Deng, C. E. Wu, W. C. Chiu, and Y. Sheng Lin, "UHD AMOLED Driving Scheme of Compensation Pixel and Gate Driver Circuits Achieving High-Speed Operation," IEEE J. Electron Devices Soc., vol. 6, pp. 26-33, Oct. 2018.
    [84] C. L. Lin, P. C. Lai, P. C. Lai, and P. S. Chen, “New 2-D/3-D switchable pixel circuit to achieve uniform OLED luminance for high-speed AMOLED displays,” IEEE J. Electron Devices Soc., Vol. 4, No. 6 pp. 436–440, Nov. 2016.
    [85] W. C. Chiu, P. S. Chen, C. M. Lu, M. X. Wang, C. C. Hung, and C. L. Lin, “Novel design of auto-compensation for TFT VTH and high-speed driving in active-matrix OLED displays,” 2017 24th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), IEEE, pp. 54-57, Jul. 2017.
    [86] W. J. Wu, L. Zhou, M. Xu, L. R. Zhang, R. H. Yao, and J. B. Peng, "An AC Driving Pixel Circuit Compensating for TFTs Threshold-Voltage Shift and OLED Degradation for AMOLED," J. Display Technol., vol. 9, no. 7, pp. 572-576, Jul. 2013.
    [87] C. H. Jeon, J. G. Um, M. Mativenga, and J. Jang, "Fast Threshold Voltage Compensation AMOLED Pixel Circuit Using Secondary Gate Effect of Dual Gate a-IGZO TFTs," IEEE Electron Device Lett., vol. 37, pp. 1450-1453, Nov. 2016
    [88] C. L. Lin, P. S. Chen, M. H. Cheng, Y. T. Liu, and F. H. Chen, “A three-transistor pixel circuit to compensate for threshold voltage variations of LTPS TFTs for AMOLED displays,” J. Display Technol., vol. 11, no. 2, pp. 146–148, Feb. 2015

    無法下載圖示 全文公開日期 2025/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE