簡易檢索 / 詳目顯示

研究生: 洪士軒
Shih-syuan Hong
論文名稱: 用於液體多參數分析之新穎光纖感測架構設計
Novel fiber sensing schemes designed for liquid parameters analyzing
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 李三良
San-Liang Lee 
呂海涵
Hai-Han Lu
呂超
Chao Lu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 69
中文關鍵詞: 光纖感測長週期光柵斜打光柵折射率感測溫度感測水位感測
外文關鍵詞: Fiber sensor, long period fiber grating, tilted fiber Bragg grating, refractive index sensing, temperature sensing, water level sensing
相關次數: 點閱:207下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文致力於光纖液體感測之研究,主要感測參數為液體溶液折射率、液體溫度、以及水位高度。首先介紹本論文主要使用的光纖光柵─斜打光柵、長週期光柵、以及布拉格光纖光柵,包含原理以及製作過程,斜打光柵以1584nm的相位光罩傾斜四度角有最明顯的纖衣模態頻譜。使用斜打光柵以及長週期光柵進行糖水溶液的折射率感測並且介紹感測原理,斜打光柵對於環境折射率的變化大約為3.178 nm/n,而線性度R^2值約為0.9981;長週期光柵實驗結果則為大約為-32.699 nm/n,線性度R^2約為0.9715。接著再以斜打光柵及長週期光柵進行液體溫度感測並介紹其感測原理,長週期光柵對於液體溫度變化結果為-0.36nm/℃,整體線性度R^2約為0.9857,斜打光柵則為0.0094nm/℃,線性度則為0.9966。整合長週期光柵以及斜打光柵之感測優點並且製作複合式感測體,同時感測液體折射率以及溫度兩種參數並且推導感測公式,使得兩光柵能夠互相校準。最後為水位高度感測實驗,以長週期光柵進行高精準度的水位感測並介紹其感測原理,結果為波長飄移量1.494 nm/cm,精準單位可以達到0.1cm,感測範圍2.1cm;以布拉格光纖光柵黏貼於複合式材料上製作水壓力計進行大範圍的水位感測,並且介紹線型光纖雷射感測系統及原理,感測結果為-0.00304nm/cm,精準度達到10cm,感測範圍130cm,只要藉由改變複合式材料的厚度便能改變此系統的精準度以及量測範圍。


    This thesis presents research on liquid characteristics sensing system using fiber grating. The key sensing parameters are liquid solution refractive index, liquid temperature and liquid level. First of all the introduction of fiber gratings used in this thesis---tilted fiber Bragg grating (TFBG), long period fiber grating (LPFG) and fiber Bragg grating (FBG) is given; including the working principles and manufacturing process. Using 1584 nm phase mask and tilting four degrees to generate the best cladding modes. Using TFBG and LPFB to monitor the refractive index of sugar solution and the sensing principles are discussed. The variation and the R square of TFBG based sensors are 3.178 nm/n and 0.9981, respectively; the variation and the R square of LPFG based sensors are -32.699 nm/n and 0.9715, respectively. Next is using TFBG and LPFG to monitor the liquid temperature. The variation and the R square of LPFG based sensors are -0.36nm/℃ and 0.9857, individually; the variation and the R square of TFBG based sensors are 0.0094nm/℃ and 0.9966, respectively. The advantages of two different sensing heads are combined to sense variations of index and temperature at the same time so they can calibrate with each other. The last part is water level sensing experiment, which is using LPFG to carry out the accurate level sensing. The result is 1.494 nm/cm with up to 0.1cm accuracy, and the sensing range is 2.1 cm depth. Pasting the FBG on carbon fiber reinforced plastic (CFRP) to make a water pressure sensor in order to achieve a larger water level range sensing; and introducing the linear-cavity fiber laser sensing system at the same time. The result is -0.00304 nm/cm with up to 10 cm accuracy, and the sensing range is 130 cm depth. Changing the thickness of CFRP to adjust the sensing range and the accuracy of the sensing system is also studied.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖表索引 VIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 文獻探討 2 1-4 論文架構 5 第二章 光纖感測原理 7 2-1 感測用光纖光柵 7 2-1-1布拉格光纖光柵原理介紹 7 2-1-2長週期光柵原理介紹 9 2-1-3斜打光柵原理介紹 11 2-2 感測用光纖光柵製作 12 2-2-1布拉格光纖光柵製作 13 2-2-2 斜打光柵製作 14 2-2-3 長週期光柵製作 17 2-3 感測用光源介紹 18 第三章 特殊光纖光柵之液體折射率感測 21 3-1 光纖光柵感測系統 21 3-2 感測理論分析 22 3-2-1斜打光柵之感測理論分析 23 3-2-2長週期光柵之感測理論分析 24 3-3感測液體折射率系統 25 3-3-1 系統架構 25 3-3-2 斜打光柵之感測結果 26 3-3-3 長週期光柵之感測結果 29 3-4 本章小結 32 第四章 液體溫度及折射率之光柵感測器設計 34 4-1溫度對於光纖光柵之影響因素 34 4-1-1長週期光柵溫度感測原理 34 4-1-2斜打光柵溫度感測原理 36 4-2 感測體對於溫度之變化程度 37 4-2-1長週期光柵液體溫度測量 38 4-2-2 斜打光柵液體溫度測量 40 4-3多參數感測體整合及原理 42 4-3-1感測體整合 43 4-3-2多參數感測公式推導 44 4-4 本章小結 48 第五章 水位感測系統 49 5-1長週期光柵精準水位感測 49 5-1-1感測理論分析 49 5-1-2 感測系統介紹 50 5-1-3實驗結果討論 51 5-2 布拉格光纖光柵水位感測 53 5-2-1感測理論分析 53 5-2-2摻鉺光纖雷射理論分析 55 5-2-3感測系統介紹 57 5-2-4實驗結果討論 59 5-3 本章小結 61 第六章 結論與未來展望 63 6-1 結論 63 6-2 未來展望 64 參考文獻 66

    [1] 廖顯奎譯,“光纖通訊”,高立圖書有限公司,2005。
    [2] 林來誠,“光纖光柵製作與應用”,光連雙月刊,第6 期,財團法人光電科技工業協進會,1996。
    [3] 董德國,陳萬清譯,“光纖通訊”,台灣東華書局股份有限公司,2000。
    [4] 王順民,“光纖光柵多工應變感測系統之製作與研究”,國立清華大學電機工程研究所碩士論文,2004。
    [5] A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Structural Control and Health Monitoring, vol. 12, pp. 269-282, 2005.
    [6] Wikipedia, “Fiber Optic Sensor”, April 2014
    http://en.wikipedia.org/wiki/Fiber_optic_sensor
    [7] C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Fabry–Perot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement,” IEEE Sensors Journal, vol. 12, no. 1, pp. 17-21, 2012.
    [8] C.W. Lai, Y. L. Lo, J. P. Yur, and C. H. Chuang, “Application of fiber Bragg grating level sensor and Fabry-Perot pressure sensor to simultaneous measurement of liquid level and specific gravity”, IEEE Sensors Journal, vol. 12, no. 1, pp. 827-831, 2011
    [9] J. Zhang, X. G. Qiao, T. Guo, Y. Y Weng, R. H. Wang, Y. Ma, Q. Z. Rong, M. L. Hu, and Z. Y. Feng, “Highly sensitive temperature sensor using PANDA fiber Sagnac interferometer”, IEEE/OSA Journal of Lightwave Technology, vol. 29, no. 24, pp. 3640-3644, December, 2011
    [10] 黃立文,“光纖光柵製作與應用(二)”,光連雙月刊,第10 期,財團法人光電科技工業協進會,1997。
    [11] 畢衛紅, 張闖, “光纖Bragg 光柵的反射特性研究,” 傳感器技術, 第22 期, 第8 卷, 2003.
    [12] K. O. Hill and M. Gerald, “Fiber Bragg Grating technology fundamentals and overview,” IEEE/OSA Journal of Lightwave Technology, vol. 15, pp. 1263-1276, 1997.
    [13] Erdogan, T., “ Fiber grating spectra, ” IEEE/OSA Journal of Lightwave Technology ,” 15, no. 8, pp. 1277-1294, 1997.
    [14] M. Harumoto, M. Shigehara, and H. Suganuma,’’ Gain-flattening filter using long-period fiber gratings ,” IEEE/OSA Journal Of Lightwave Technology, 20, no. 6, pp. 1027-1033, 2002.
    [15] X. Y. Dong , H. Zhang , B. Liu , and Y. P. Miao, “Tilted fiber Bragg gratings: principle and sensing applications”, Photonic Sensors, vol. 1, no. 1, pp. 6-30, 2011
    [16] G. Meltz, W.W. Morey, and W.H. Glenn, “Formation of Bragg grating in optical fibers by transverse holographic method,” Optics Letters, vol.14, no.15, pp.823-825, 1989.
    [17] 陳宣臣, “波長可調光纖光柵之研製與應用,” 台灣科技大學電子工程研究所碩士論文, 2004.
    [18] K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett., vol.62, no.10, pp. 1035-1037, 1993.
    [19] 劉學政, “光纖光柵研製及其於光網路模組之應用,” 台灣科技大學電子工程研究所碩士論文, 2002.
    [20] 張銘宏, “兼具增益之可重構光信號塞取多工器,” 台灣科技大學電子工程研究所碩士論文, 2005.
    [21] P. C. Becker, N. A. Olsson and J. R. Simpson, “Erbium-doped fiber amplifiers: fundamentals and technology,” San Diego, USA: Academic Press, 1999.
    [22] Y. Sun, J. L. Zyskind and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE Journal Selected Topics in Quantum Electronics, vol.3, pp. 991-1007, 1997.
    [23] C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” IEEE/OSA Journal Of Lightwave Technology, vol.9, pp. 271-283, 1991.
    [24] L. B. Fletcher, J. J. Witcher, N. Troy, R. K. Brow, and D. M. Krol, “Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses,” Optics Letters, vol. 37, no. 7, pp. 1148-1150, April, 2012
    [25] 廖協虹, “C+L-Band 摻鉺光纖放大器的研製與應用”, 國立台灣科技大學電子工程研究所碩士論文, 2004.
    [26] 葉天傑,“外力式長週期與傳統式短週期光纖光柵的特性分析及實驗量測”, 國立台灣大學機械工程研究所碩士論文,2002。
    [27] J. W. Goodman, “Fiber optic smart structures,” John Wiley & Sons, 1995.
    [28] L. L. Jun, L. Y. Zheng, C. M. Yong, L. Chao, Y. X. Mei, Z. X. Guan, J. Peng, S. Jing, and L. Jing, “Calculation and simulation of optical fiber core and cladding mode effective refractive index”, Acta Phys. Sin. vol. 62, no. 14, 2013.
    [29] Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating”, Sensors and Actuators A, vol. 170, pp. 62-65, 2011
    [30] 李杰,“長週期光纖光柵折射率傳感的研究概況”,廈門大學電子工程系
    [31] S. W. James, and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application”, Meas. Sci. Technol. vol. 14, pp. 49–61, 2003
    [32] C. Chen, L. Xiong, A. Jafari, and J. Albert, “Differential sensitivity characteristics of tilted fiber Bragg grating sensors”, Fiber Optic Sensor Technology and Applications, 4th Edtion, 2005
    [33] S. Khaliq, S. W. James, and R. P. Tatam, “Fiber-optic liquid-level sensor using a long-period grating”, Optics Letters, vol. 26, no. 16, pp. 1224-1226, August 15, 2001
    [34] 維基百科,“流體靜力平衡”, 2013 http://zh.wikipedia.org/wiki/%E6%B5%81%E9%AB%94%E9%9D%9C%E5%8A%9B%E5%B9%B3%E8%A1%A1
    [35] R. Kashyap, “Fiber Bragg gratings,” San Diego, USA: Academic Press, 1999.
    [36] P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers: fundamentals and technology,” San Diego, USA: Academic Press, 1999.
    [37] Q. Mao and J. W. Y. Lit, “Multi-wavelength erbium-doped fiber laser with active overlapping linear cavities,” IEEE/OSA Journal of Lightwave Technology, vol. 21, pp. 160-169, 2003.
    [38] S. K. Liaw, H. C. Chen, and Y. C. Lai, “C-Band continuously tunable lasers based on fiber Bragg gratings,” Opto-Electronic and Communication Conference 2004, Yokohama, Japan, 2004.
    [39] S. W. Harun, M. Z. Zulkifli, and H. Ahmad, “A linear cavity S-band Brillouin/Erbium fiber laser,” Laser Physics Lett., vol. 3, pp. 369-371, 2006.
    [40] S. K. Liaw, W. Y. Jang, C. J. Wang, and K. L. Hung, “Pump efficiency improvement of a C-band tunable fiber laser using optical circulator and tunable fiber gratings,” Applied Optics, vol. 46, pp. 2280-2282, 2007.
    [41] D. B. Mortimore, “Fiber loop reflectors,” IEEE/OSA Journal of Lightwave Technology, vol. 6, no. 7, pp.1217-1224, 1988

    QR CODE