簡易檢索 / 詳目顯示

研究生: 陳怡伶
Yi-Lin Chen
論文名稱: 低功耗低供應電壓敏感度之高精度時域智慧型溫度感測器
A Low Power Consumption Low Supply Sensitivity High Accuracy Time-Domain Smart Temperature Sensor
指導教授: 陳伯奇
Poki Chen
口試委員: 陳信樹
Hsin-Shu Chen
郭建宏
Chien-Hung Kuo
姚嘉瑜
Chia-Yu Yao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 84
中文關鍵詞: SOCADCTime-domain temperature sensorOne-point Calibration
外文關鍵詞: SOC, ADC, Time-domain temperature sensor, One-point Calibration
相關次數: 點閱:245下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高密度、小面積且具多用途之系統晶片已是當今主流,強大的功能總是伴隨著高功率的消耗,因此功率的管理已成為電路設計的重點之一,如果不仔細處理由功率消耗所產生的熱能,那將會使得電路元件被破壞進而影響整個系統的安全性,也會導致後續處理問題的成本增加。為了降低溫度變化對電路造成的影響,在超大型積體電路裡面內建一個溫度感測器來監控溫度的變化,將會使得系統的可靠性及使用時間增加。
    本論文所提出之溫度感測器具有小面積、低功耗、低供應電壓敏感度且高精度之效能,可以有效的扮演溫度監控的角色,架構上沒有使用複雜的類比至數位轉換器當電路轉換的媒介,而是以操作在時域之溫度感測器作為研究基礎,並採用增益可調時間放大器(Variable Gain Time Amplifier)來支援單點校正以大幅壓低量產成本。
    本晶片是由UMC 0.25 µm CMOS 2P6M 5V製程生產,線性度為-0.5 ~+0.7 ℃、電源敏感度: -0.243~+0.597°C、面積:0.042 mm2、解析度:0.0553 ℃、溫度量測範圍:-40~90 ℃,而功率消耗僅有2.33µW @ 1 Sample/s 。


    The performance upgrade of chips are usually accompanied the increment power consumption. Along with the pursuing of high integration density and small chip size, thermal management becomes an inevitable trend for chip design nowadays. Without proper supervision, the heat built up by power consumption may seriously damage the device robustness or even burn out the chip. To reduce the risk of overheating, VLSI chips gradually integrate temperature sensors for thermal monitoring to enhance their reliability and life time.
    A smart temperature sensor featuring small die size, low power, low supply voltage sensitivity but high accuracy is proposed in this thesis. Since all signals are processed in time-domain, no subtle analog-to-digital converter or operational amplifier is used. The chip size and power consumption can be substantially reduced. A variable gain time amplifier is adopted to support one-point calibration for the cost down of mass production.
    The chip was fabricated in a UMC 0.25 µm CMOS 2P6M 5V standard CMOS process. The chip size is merely 0.042 mm2. The resolution, measurement range, inaccuracy, supply sensitivity and power consumption are 0.0553°C, -40~90°C, -0.5~+0.7°C, -0.243~+0.597°C and 2.33µW @ 1Sample/s, respectively.

    摘要………………………………………………………………………………………….I Abstract……………………………………………………………………………………..II 誌謝………………………………………………………………………………………..III 圖目錄……………………………………………………………………………………..VI 表目錄……………………………………………………………………………………...X 第一章 序論………………………………………………………………………………..1 1.1研究動機…………………………………………………………………………..1 1.2論文架構…………………………………………………………………………..3 第二章 溫度感測器………………………………………………………………………..4 2.1傳統溫度感測元件………………………………………………………….…….4 2.2積體式溫度感測器………………………………………………………….…….8 2.2.1典型的積體式溫度感測器結構…………………………………………...8 2.2.2次臨界傳導區漏電流之溫度感測器…………………………………….15 2.2.3電流控制振盪器式之溫度感測器………………………….……………17 2.2.4四電晶體之溫度感測器……………………………………………….....22 2.3積體式溫度感測器之優勢及相關參數…………………………………….…...26 2.4結論………………………………………………………………………….…...28 第三章 低功耗之高精度時域智慧型溫度感測器………………………………………30 3.1整體架構介紹....……………………………………………..............................30 3.2溫度感測器方塊介紹....……………………………………..............................30 3.3 CTAT電路架構....…………………………………………...............................31 3.4自我調節式電壓控制振盪器電路架構……..………........................................34 3.5數位電路....…………………..…………………………....................................36 3.6電路模擬...…………………..…………………………....................................39. 第四章 佈局考量…………………………………………………………………………46 4.1佈局考量….…………………………………………………………………….46第五章 量測考量與單點校正及量測結果………………………………………………48 5.1量測考量….………………………………………………..…………………...48 5.2單點校正(One-Point Calibration)……….…………………..………………… 49 5.3量測結果……….…………………..……………………………………..…… 51 5.4結論…………………………………….……………………..………………...63 第六章 低功耗低供應電壓敏感度之高精度時域智慧型溫度感測器…………………64 6.1數位電路……………………………….……………………..………………...64 6.2電路模擬.……………………………………………………..………………...67 6.3電路佈局……………………………….……..………..…………………..…...76 6.4結論…………………………………….……………………..………………...76 第七章 效能比較與結論…………………………………………………………………77 7.1效能比較……………………………….……………………..………………...77 7.2結論及未來展望……………………….……………………..………………...79 參考文獻…………………………………………………………………………………..80 圖目錄 圖2.1 C1604之特性曲線…………………………………………………..………………5 圖2.2 負溫度係數熱敏電阻之特性曲線…………………………………………………6 圖2.3 正溫度係數之特性曲線……………………………………………………………6 圖2.4 臨界溫度電阻之特性曲線…………………………………………………………7 圖2.5 基本熱電偶示意圖…………………………………………………………………7 圖2.6 典型溫度感測器示意圖……………………………………………………………8 圖2.7 完整的溫度感測器電路方塊架構圖………………………………………………9 圖2.8 與絕對溫度成正比電路圖………………………………………………………..10 圖2.9 傳統帶差參考電路圖……………………………………………………………..13 圖2.10ΔVBE與溫度之關係曲線………………………………………………………...14 圖2.11次臨界傳導漏電流溫度感測器…………………………………………………..16 圖2.12次臨界傳導漏電流溫度感測架構圖……………………………………………..17 圖2.13電流控制環型振盪器之溫度感測器......................................................................18 圖2.14電流控制遲滯振盪器之溫度感測器……………………………………………..19 圖2.15振盪波形和電容電壓之關係圖…………………………………………………..20 圖2.16振盪頻率對溫度及功率對溫度曲線圖…………………………………………..21 圖2.17三電晶體之溫度感測器…………………………………………………………..23 圖2.18四電晶體之溫度感測器…………………………………………………………..24 圖2.19四電晶體工作點曲線圖…………………………………………………………..25 圖2.20溫度感測核心完整電路…………………………………………………………..26 圖3.1低功耗之高精度時域智慧型溫度感測器之電路方塊圖…….…………………...30 圖3.2溫度感測器功能示意圖…………………………………………….……………..31 圖3.3溫度感測器內部組成方塊圖………...……………………………………………31 圖3.4 CTAT電壓產生電路……………………………………………….………………32 圖3.5啟動電路(Start-Up Circuit)…………………………………………………….......32 圖3.6(a)傳輸閘延遲元件…………………………………………………………………34 圖3.6(b)傳輸閘電壓控制振盪器電路圖…………………………………………………34 圖3.7自我調節壓控振盪器之延遲級……………………………………….……….......35 圖3.8自我調節壓控振盪器………………………………………………………............36 圖3.9數位電路功能示意圖…………………………………………………………........36 圖3.10數位電路組成方塊圖……………………………………………………..............37 圖3.11數位電路內部組成方塊圖……………………………………………………......37 圖3.12數位電路時序圖…………………………………………………………….….....39 圖3.13(a)負TC電壓電路(CTAT)溫度對輸出電壓(Vref)模擬圖分開顯示..……..….....40 圖3.13(b)負TC電壓電路(CTAT)溫度對輸出電壓(Vref)模擬圖合重疊顯示.………....40 圖3.14VDD變動2.5v±10%(2.22v~2.75v),不同Vctrl控制電壓對頻率模擬圖…………41 圖3.15不同控制電壓下VDD變動2.5v±10%(2.25v~2.75v)對壓控振盪器輸出頻率關係模擬結果…………………………………………………………………………………..41 圖3.16VDD變動2.5v±10%(2.25v~2.75v),不同溫度對頻率模擬圖……………….….42 圖3.17 VDD變動2.5v±10%(2.25v~275v),ㄧ次線性迴歸圖………………………….…43 圖3.18 2.5v在製程變異(TT、SF、FS)情況底下,ㄧ次線性迴歸圖………………………43 圖3.19 2.25v在製程變異(TT、SF、FS)情況底下,ㄧ次線性迴歸圖…………………44 圖3.20 2.75v在製程變異(TT、SF、FS)情況底下,ㄧ次線性迴歸圖…………………44 圖3.21在製程變異TT情況底下,各電壓變異溫度絕對誤差…………………………45 圖3.22在製程變異SF情況底下,各電壓變異溫度絕對誤差…………………………45 圖3.23在製程變異FS情況底下,各電壓變異溫度絕對誤差…………………………45 圖4.1理想與實際氧化層…………………………………………………………............46 圖4.2同重心佈局……………………………………………………………………........47 圖4.3電路佈局圖(a)各區塊位置(b)整體佈局圖…………………………………….…..47 圖5.1量測示意圖………………………………………………………………..………..48 圖5.2無單點校正之數位值對溫度曲線圖…………………………………………...….49 圖5.3單點校正之數位值對溫度曲線圖……………………………………………...….50 圖5.4單點校正電路……………………………………………………………………....50 圖5.5實際測試設備……………………………………………………………..………..52 圖5.6 IC實照圖…………………………………………...……………………………....52 圖5.7 負30℃下供應電壓為2.75V之輸出波形……………..……......………………..53 圖5.8 負30℃下供應電壓為2.5V之輸出波形…………………………..……………..53 圖5.9 負30℃下供應電壓為2.25V之輸出波形………………………………..……….54 圖5.10 0℃下供應電壓為2.75V之輸出波形………………………………………........54 圖5.11 0℃下供應電壓為2.5V之輸出波形…………………………………………......55 圖5.12 0℃下供應電壓為2.25V之輸出波形…………………………………….…........55 圖5.13 30℃下供應電壓為2.75V之輸出波形…………………………………..…........56 圖5.14 30℃下供應電壓為2.5V之輸出波形....................................................................56 圖5.15 30℃下供應電壓為2.25V之輸出波形..................................................................57 圖5.16 60℃下供應電壓為2.75V之輸出波形..................................................................57 圖5.17 60℃下供應電壓為2.5V之輸出波形....................................................................58 圖5.18 60℃下供應電壓為2.25V之輸出波形..................................................................58 圖5.19 90℃下供應電壓為2.75V之輸出波形..................................................................59 圖5.20 90℃下供應電壓為2.5V之輸出波形 ...................................................................59 圖5.21 90℃下供應電壓為2.25V之輸出波形..................................................................60 圖5.22量測電壓變異下溫度誤差......................................................................................61 圖5.23 IC單點校正後與黃金校準線之溫度對輸出頻率圖.............................................62 圖6.1 數位電路功能示意圖..............................................................................................64 圖6.2 數位電路組成方塊圖..............................................................................................64 圖6.3 數位電路內部組成方塊圖......................................................................................65 圖6.4 數位電路時序圖......................................................................................................67 圖6.5 (a) 負TC電壓電路(CTAT)溫度對輸出電壓(Vref)模擬圖分開顯示.................... 68 圖6.5 (b) 負TC電壓電路(CTAT)溫度對輸出電壓(Vref)模擬圖重疊顯示....................68 圖6.6 VDD變動2.5V±10%(2.25V~2.75V),不同Vctrl控制電壓對頻率模擬圖................69 圖6.7不同控制電壓下VDD變動2.5V±10%(2.25V~2.75V) 不同Vctrl控制電壓對壓控振盪器輸出頻率關係模擬結果..........................................................................................69 圖6.8 VDD變動2.5V±10%(2.25V~2.75V),不同溫度對週期模擬圖 .............................70 圖6.9 VDD變動2.5V±10%(2.25V~2.75V),ㄧ次線性迴歸圖...........................................71 圖6.10 2.5V在製程變異(TT、SS、FF)情況底下,ㄧ次線性迴歸圖...................................71 圖6.11 2.25V在製程變異(TT、SS、FF)情況底下,ㄧ次線性迴歸圖 ...............................72 圖6.12 2.75V在製程變異(TT、SS、FF)情況底下,ㄧ次線性迴歸圖................................72 圖6.13 在製程變異TT情況底下,各電壓變異溫度誤差................................................74 圖6.14 在製程變異SF情況底下,各電壓變異溫度誤差................................................74 圖6.15 在製程變異FS情況底下,各電壓變異溫度誤差................................................74 圖6.16 數位電路前模擬功能驗證 (a)整體波形,(b)局部放大.....................................75 圖6.17數位電路後模擬功能驗證 (a)整體波形,(b)局部放大.......................................75 圖6.18電路佈局圖(a)各區塊位置(b)整體佈局圖.............................................................76 表目錄 表5.1 IC量測之誤差 .........................................................................................................60 表5.2量測電壓變異下之輸出頻率....................................................................................61 表5.3單點校正後誤差........................................................................................................62 表7.1 效能比較表..............................................................................................................77

    [1] 盧明智、盧鵬任 編著,感測器應用與線路分析,台北:全華出版公司,2000。
    [2] R. Achenbach, M. Feuerstack-Raible, F. Hiller, M. Keller, K. Meier, H. Rudolph, R. Saur-Brosch, “A digitally temperature-compensated crystal oscillator,” IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp. 1502-1506, Oct. 2000.
    [3] C. Poirier, R. McGowen, C. Bostak, S. Naffziger, “Power and temperature control on a 90nm Itanium®-family processor,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 304-305, Jun. 2005.
    [4] C. Park, H. Chung, Y. S. Lee, J. Kim, J. Lee, M. S. Chae, D. H. Jung, S. H. Choi, S. Y. Seo, T. S. Park, J. H. Shin, J. H. Cho, S. Lee, K. W. Song, K. H. Kim, J. B. Lee, C. Kim, S. I. Cho, “A 512-mb DDR3 SDRAM prototype with CIO minimization and self-calibration techniques,” IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp. 831-838, Apr. 2006.
    [5] C. Park, H. Chung, Y. S. Lee, J. Kim, J. Lee, M. S. Chae, D. H. Jung, S. H. Choi, S. Y. Seo, T. S. Park, J. H. Shin, J. H. Cho, S. Lee, K. Kim, J. B. Lee, C. Kim, S. I. Cho, “A 512 Mbit, 1.6 Gbps/pin DDR3 SDRAM prototype with C10 minimization and self-calibration techniques,” VLSI circuit, Digest of Technical Symposium on IEEE Conf. , pp. 370-373, Jun. 2005.
    [6] A. Bakker and J. H. Huijsing, High-Accuracy CMOS Smart Temperature Sensors. Boston:Kluwer Academic Publishers, 2000.
    [7] G. C. M. Meijer, G. Wang, and F. Fruett, “Temperature sensors and voltage references implemented in CMOS technology,” IEEE Sensors Journal., vol. 1, no. 3, pp. 225–234, Oct. 2001.
    [8] A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE Journal of Solid-State Circuits, vol. 31, no. 7, pp. 933-937, Jul. 1996.
    [9] M. Tuthill, “A switched-current, switched-capacitor temperature-sensor in 0.6-µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 33, no. 7, pp. 1117-1122, Jul. 1998.
    [10] P. Krummenacher and H. Oguey, “Smart temperature sensor in CMOS technology,” Sensors and Actuators, A21-A23, pp. 636-638, 1990.
    [11] A. Bakker, “CMOS smart temperature sensors-an Overview,” Proc. IEEE Sensors, vol. 2, pp. 1423-1427, Jun. 2002.
    [12] K. E. Kuijk, “A precision reference voltage source,” IEEE Journal of Solid-State Circuits, vol. 8, no. 3, pp. 222-226, Jun. 1973.
    [13] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
    [14] R. Widlar, “New developments in IC voltage regulators,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 158-159, Feb. 1970.
    [15] S. J. Chang, Advanced analog IC design, EE, NCKU, 2003.
    [16] M. Sasaki, M. Ikeda and K. Asada. “A Temperature sensor with an inaccuracy of -1/+0.8℃ using 90-nm 1-V CMOS for online thermal monitoring of VLSI circuits,” IEEE Transaction on Semiconductor Manufacturing. vol. 21, pp. 201 - 208, May. 2008.
    [17] I. M. Filanovsky and A. Allam, “Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits,” IEEE Transactions on Circuits and Systems I, vol. 48, no. 7, pp. 876–884, Jul. 2001.
    [18] K. Arabi and B. Kaminska, “Built-in temperature sensors for on-line thermal monitoring of microelectronic structures,” IEEE Computer Design:VLSI in Computers and Processors, (ICCD), pp. 462–467, Oct. 1997.
    [19] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. Oxford University Press, 2002.
    [20] P. Ituero, J. L. Ayala, M. Lopez-Vallejo, “Leakage-based On-Chip Thermal Sensor for CMOS Technology,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3327-3330, 2007.
    [21] M. K. Law, A. Bermak, “A 405-nW CMOS Temperature Sensor Based on Linear MOS Operation,” IEEE Transactions on Circuits and Systems II, vol. 56, no. 12, pp. 891–895, Dec. 2009.
    [22] M. A. P. Pertijs, A. Bakker, and J. H. Huijsing, “A high-accuracy temperature sensor with second-order curvature correction and digital bus interface,” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS), pp. 368–371, May. 2001.
    [23] M. A. P. Pertijs, K. A. A. Makinwa, J. H. Huijsing, “A CMOS Smart Temperature Sensor With a 3σ Inaccuracy of 0.1 °C From 55 °C to 125 °C,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2805-2815, Dec. 2005.
    [24] A. L. Aita, M. Pertijs, K. Makinwa, J. H. Huijsing, “A CMOS Smart Temperature Sensor with a Batch-Calibrated Inaccuracy of ±0.25°C (3σ) from -70°C to 130°C,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 342-343, Feb. 2009.
    [25] F. Sebastiano, L. J. Breems, K. A. A. Makinwa, S. Drago, D. M. W. Leenaerts, B. Nauta, “A 1.2V 10μW NPN-Based Temperature Sensor in 65nm CMOS with an Inaccuracy of ±0.2°C (3σ) from –70°C to 125°C,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 312-313, Feb. 2010.
    [26] P. Chen, C. C. Chen, C. C. Tsai, W. F. Lu, “A Time-to-Digital-Converter-Based CMOS Smart Temperature Sensor,” IEEE Journal of Solid-State Circuits, vol. 40, no. 8, pp. 1642-1648, Aug. 2005.
    [27] K. Kim, H. Lee, S. Jung, C. Kim, “ A 366kS/s 400uW 0.0013mm2 Frequency-to-Digital Converter Based CMOS Temperature Sensor Utilizing Multiphase Clock” in Proc. Custom Integrated Circuits Conf., pp. 203-206, Sep. 2009.
    [28] C. K. Kim, B. S. Kong, C. G. Lee, Y. H. Jun, “ CMOS Temperature Sensor with Ring Oscillator for Mobile DRAM Self-refresh Control,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3094-3097, May. 2008.
    [29] Y. Ren, C. Wang, H. Hong, “An all CMOS temperature sensor for thermal monitoring of VLSI circuits,” IEEE Circuits and Systems International Conference on Testing and Diagnosis, pp. 1-5, Apr. 2009.
    [30] M. K. Law, A. Bermak, “A Time Domain Differential CMOS Temperature Sensor with Reduced Supply Sensitivity,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2126-2129, May. 2008.
    [31] Sheng-Huang Lee, Chen Zhao, Yen-Ting Wang, Degang Chen, Geiger, R., "Multi-threshold transistors cell for Low Voltage temperature sensing applications," Circuits and Systems (MWSCAS), 2011 IEEE 54th International Midwest Symposium on , vol., no., pp.1-4, 7-10 Aug. 2011
    [32] Ka Nang Leung; Mok, P.K.T.; , "A CMOS voltage reference based on weighted ΔVGS for CMOS low-dropout linear regulators," Solid-State Circuits, IEEE Journal of , vol.38, no.1, pp. 146- 150, Jan 2003
    [33] I. C. Hwang, C. Kim, and S. –M. Kang, “A self-regulating VCO with supply sensitivity of <0.15%-Delay/1%-Supply,” IEEE International Solid-State Circuits Conf.(ISSCC) Dig. , Tech. Papers, vol. 2, pp. 140-141, Feb. 2002.
    [34] I. C. Hwang, C. Kim, and S. –M. Kang, “A self-regulating VCO with low supply sensitivity ,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 42-48, Jan. 2004.
    [35] A. Hastings, The art of analog layout, Prentice Hall, 2001.
    [36] P. Ituero, J. L. Ayala, M. Lopez-Vallejo, “A Nanowatt Smart Temperature Sensor for Dynamic Thermal Management,” IEEE Sensors Journal., vol. 8, no. 12, pp. 2036-2043, Dec. 2008.
    [37] W. Kyoungho, S. Meninger, T. Xanthopoulos, E. Crain, Ha. Dongwan, Ham, “Dual-DLL-Based CMOS All-Digital Temperature Sensor for Microprocessor
    Thermal Monitoring,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 68-69, 69a, Feb. 2009.
    [38] P. Chen, T. K. Chen, Y. S. Wang, C. C. Chen, “ A Time-Domain Sub-Micro Watt Temperature Sensor With Digital Set-Point Programming,” IEEE Sensors Journal., vol. 9, no. 12, pp. 1639-1646, Dec. 2009.
    [39] P. Chen, C. C. Chen, Y. H. Peng, K. M. Wang, Y. S. Wang, “A Time-Domain SAR Smart Temperature Sensor With Curvature Compensation and a 3σ Inaccuracy of 0.4 ℃ ∼ +0.6 ℃ Over a 0 ℃ to 90 ℃ Range,” IEEE Journal of Solid-State Circuits, vol. 45, no. 3, pp. 600-609, Mar. 2010.
    [40] K. Souri, M. Kashmiri, K. Makinwa, “A CMOS Temperature Sensor with an Energy-Efficient Zoom ADC and an Inaccuracy of ±0.25°C (3σ) from -40°C to 125°C,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 310-311, Feb. 2010.

    無法下載圖示 全文公開日期 2017/07/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE