簡易檢索 / 詳目顯示

研究生: Yusuf Rahmatullah
Yusuf Rahmatullah
論文名稱: 柱加強型均熱板的數值建模與設計最佳化
A Numerical Modelling and Design Optimization of Pillar-Reinforced Vapor Chamber
指導教授: 溫琮毅
Tsrong-Yi Wen
口試委員: 林顯群
Sheam-Chyun Lin
田維欣
Wei-Hsin Tien
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 77
外文關鍵詞: phase change, vapor chamber
相關次數: 點閱:204下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Vapor chamber is a phase change based heat spreader broadly used for thermal management of electronics due to its high equivalent thermal conductivity. Vapor chamber performance depends on various factors such that optimization by experiment is time and cost consuming. Therefore, a steady numerical model is helpful for such optimization purposes. However, phase change at the liquid-vapor interfaces is complex and the numerical stability often suffers from the fluctuation of the pressure, temperature, and density inside vapor core. Therefore, ignoring the compressibility effect and temperature variation in the vapor core while predefined phase change (either condensation or evaporation) on the specified location at liquid-vapor interfaces becomes a practical approach. These assumptions might be helpful but insufficient for vapor chambers with high input heat flux, large geometry, or small heating area, and when the pillars are presented. This study developed a steady numerical model for the vapor chamber by implementing the source terms derived from the Lee model in the single-phase flow through the ghost fluid method. At the same time, the flow compressibility and the temperature variation within the vapor core are considered without any predefined phase change location at the liquid-vapor interfaces. Furthermore, this proposed numerical model is used to optimize the thermal performance of pillar-reinforced vapor chambers in terms of pillar pitch, porosity, and diameter. The results show that this proposed numerical model agrees with the experimental data well. Under a wide range of heat input (50 W to 350 W), the average relative temperature error ranges from 5.5\% to 8.0\% and from 1.4\% to 3.0\% for the evaporator and condenser sides, respectively, while for the heating area, the error ranges from 3.0\% to 5.0\%. Although the temperature accuracy is not exceptional compared to the works shown in the literature, this proposed numerical model exhibits good numerical stability, fast convergence (fewer than 500 iterations with over four million elements), and fewer assumptions needed. In addition, the temperature and flow characteristics agree with the phase change behaviors, making it suitable for vapor chamber design and optimization. The design optimization results show that a smaller pillar pitch, lower pillar porosity, and larger pillar diameter can reduce the thermal resistance significantly but result in higher temperature differences on the condenser side. At the same time, a small pillar pitch and large pillar diameter can enhance the critical heat flux by lowering the liquid pressure drop. However, the thermal resistance of the vapor chamber starts to increase when the contact area ratio between the pillar and heating area is higher than 50\%. Therefore, it is suggested that the pillar-reinforced vapor chamber works best at the pillar pitch of 10 mm, the pillar porosity of 0.3, and the pillar diameter of 6 mm.

    Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Design and Fabrication of Vapor Chamber . . . . . . . . . 4 1.2.2 Pillar-Reinforced Vapor Chamber . . . . . . . . . . . . . . 5 1.2.3 Numerical Modeling of Vapor Chamber . . . . . . . . . . 10 1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Model Descriptions 15 2.1 Problem Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Applied Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.1 Continuity Equations . . . . . . . . . . . . . . . . . . . . . 20 2.4.2 Momentum Equations . . . . . . . . . . . . . . . . . . . . 21 2.4.3 Energy Equations . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.4 Mass and Energy Transfer Equations . . . . . . . . . . . . 23 2.5 Lee Model Phase Change in Single-Phase Flow . . . . . . . . . . 25 2.6 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6.1 Outside Wall . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6.2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.7 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.8 Solution Procedures . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.9 Computational Grids . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.10 Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Results and Discussions 37 3.1 Grid Independence . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Numerical Validation . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 Temperature and Flow Visualizations . . . . . . . . . . . . . . . . 41 3.4 Methodology Comparison . . . . . . . . . . . . . . . . . . . . . . 46 3.5 Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.5.1 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . 49 3.5.2 Temperature Uniformity . . . . . . . . . . . . . . . . . . . 55 3.5.3 Liquid Pressure Drop . . . . . . . . . . . . . . . . . . . . . 58 4 Conclusions and Future Works 61 4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    [1] L. Zhu, H. Tan, and J. Yu, ”Analysis on optimal heat exchanger size of thermoelectric cooler for electronic cooling applications,” Energy Conversion and Management, vol. 76, pp. 685-690, 2013.
    [2] A. L. Moore and L. Shi, ”Emerging challenges and materials for thermal management of electronics,” Materials Today, vol. 17, no. 4, pp. 163-174, 2014.
    [3] C. Bailey, ”Thermal Management Technologies for Electronic Packaging: Current Capabilities and Future Challenges for Modelling Tools,” 10th Electronics
    Packaging Technology Conference, pp. 527-532, 2008.
    [4] T. Y. Wen and J. C. Ye, ”Recent developments in air pumps for thermal management of electronics,” Journal of Electronic Packaging, vol. 144, no. 3, p. 030802,
    2022.
    [5] C. K. Huang, C. Y. Su, and K. Y. Lee, ”The effects of vapor space height on the
    vapor chamber performance,” Experimental Heat Transfer, vol. 25, no. 1, pp.
    1-11, 2012.
    [6] R. Ranjan, J. Y. Murthy, S. V. Garimella, and U. Vadakkan, ”A numerical
    model for transport in flat heat pipes considering wick microstructure effects,”
    International Journal of Heat and Mass Transfer, vol. 54, no. 1-3, 2011.
    [7] Y. Koito, ”Numerical visualization of heat transfer in a vapor chamber,” 2010 5th
    International Microsystems Packaging Assembly and Circuits Technology Conference, 2010.
    [8] Q. Cai, B. C. Chen, and C. Tsai, ”Design, development and tests of highperformance silicon vapor chamber,” Journal of Micromechanics and Microengineering, vol. 22, no. 3, p. 035009, 2012.
    [9] B. Zohuri, ”Basic Principles of Heat Pipes and History,” Springer International
    Publishing, pp. 1-41, 2016.
    [10] H. Yu-Hsun, K. Shung-Wen, and T. Wan-Chun, ”Strain analysis of vapor chamber
    heat spreaders,” Journal of Marine Science and Technology, vol. 18, no. 2, 2010.
    [11] Y. Jiang, G. Carbajal, C. B. Sobhan, and J. Li, ”3D Heat Transfer Analysis of
    a Miniature Copper-Water Vapor Chamber with Wicked Pillars Array,” ISRN
    Mechanical Engineering, vol. 2013, p. 194908, 2013.
    [12] L. Cong and J. Qifei, ”Influences of copper columns on thermal hydraulic performance of the vapor chamber,” Heat and Mass Transfer, vol. 55, no. 11, 2019.
    [13] S. W. Chen, J. C. Hsieh, C. T. Chou, H. H. Lin, S. C. Shen, and M. J. Tsai,
    ”Experimental investigation and visualization on capillary and boiling limits of
    micro-grooves made by different processes,” Sensors and Actuators A: Physical,
    vol. 139, no. 1-2, pp. 78-87, 2007.
    [14] J. A. Weibel and S. V. Garimella, ”Recent advances in vapor chamber transport
    characterization for high-heat-flux applications,” Advances in Heat Transfer, vol.
    45, pp. 209-301, 2013.
    [15] M. Bulut, S. G. Kandlikar, and N. Sozbir, ”A review of vapor chambers,” Heat
    Transfer Engineering, vol. 40, no. 19, pp. 1551-1573, 2019.
    [16] Q.-H. Wang, H. Zhao, Z.-J. Xu, J.-R. Li, and D.-X. Deng, ”Numerical analysis
    on the thermal hydraulic performance of a composite porous vapor chamber with
    uniform radial grooves,” International Journal of Heat and Mass Transfer, vol.
    142, p. 118458, 2019.
    [17] R. Ranjan, J. Y. Murthy, S. V. Garimella, D. H. Altman, and M. T. North, ”
    Modeling and Design Optimization of Ultrathin Vapor Chambers for High Heat
    Flux Applications,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, no. 9, pp. 1465-1479, 2012.
    [18] G. Patankar, J. A. Weibel, and S. V. Garimella, ”Patterning the condenser-side
    wick in ultra-thin vapor chamber heat spreaders to improve skin temperature
    uniformity of mobile devices,” International Journal of Heat and Mass Transfer,
    vol. 101, pp. 927-936, 2016.
    [19] Y. Koito, H. Imura, M. Mochizuki, Y. Saito, and S. Torii, ”Numerical analysis
    and experimental verification on thermal fluid phenomena in a vapor chamber,”
    Applied Thermal Engineering, vol. 26, no. 14, pp. 1669-1676, 2006.
    [20] K. C. Lee, ”Vapor Chamber Manufacturing Method,” United States Patent US
    20110277311A1 Patent Appl. 13/090,712, 2011.
    [21] D. Li, Z. Huang, J. Zhao, Q. Jian, and Y. Chen, ”Analysis of heat transfer
    performance and vapor–liquid meniscus shape of ultra-thin vapor chamber with
    supporting columns,” Applied Thermal Engineering, vol. 193, p. 117001, 2021.
    [22] D. T. Queheillalt, G. Carbajal, G. P. Peterson, and H. N. G. Wadley, ”A multifunctional heat pipe sandwich panel structure,” International Journal of Heat
    and Mass Transfer, vol. 51, no. 1, pp. 312-326, 2008.
    [23] P. Naphon and S. Wiriyasart, ”Effect of sintering columns on the heat transfer
    and flow characteristics of the liquid cooling vapor chambers,” Heat and Mass
    Transfer, vol. 52, no. 9, pp. 1807-1820, 2016.
    [24] L. Lu, H. Liao, X. Liu, and Y. Tang, ”Numerical analysis on thermal hydraulic
    performance of a flat plate heat pipe with wick column,” Heat and Mass Transfer,
    vol. 51, no. 8, pp. 1051-1059, 2015.
    [25] M. Muneeshwaran, Y.F. Lin, L. Lin, V. Lin, and C.C. Wang, ”A parametric study
    on the performance of vapor chamber in association with pillar distribution,”
    Applied Thermal Engineering, vol. 207, p. 118217, 2022.
    [26] T. P. Cotter, ”Theory of Heat Pipe,” DTIC Document, 1965.
    [27] C. J. H. H. Van Ooijen, ”Vapor Flow Calculation in a Flat-Plate Heat Pipe,”
    AIAA Journal, vol. 17, No. 11, 1979.
    [28] F. Issacci, I. Catton, A. Heiss, and N. M. Ghoniem, ”Analysis of Heat Pipe Vapor
    Dynamics,” Chemical Engineering Communications, vol. 85, no. 1, pp. 85-94,
    1989.
    [29] F. Issacci, I. Catton, and N. M. Ghoniem, ”Vapor Dynamics of Heat Pipe StartUp,” Journal of Heat Transfer, vol. 113, no. 4, pp. 985-994, 1991.
    [30] W. S. Chang and G. T. Colwell, ”Mathematical Modeling of the Transient Operating Characteristic of Low-Temperature Heat Pipe,” Numerical Heat Transfer,
    vol. 8, no. 2, pp. 169-186, 1985.
    [31] Y. Cao and A. Faghri, ”Transient two-dimensional compressible analysis for hightemperature heat pipes with pulsed heat input,” Numerical Heat Transfer, Part
    A: Applications, vol. 18:4, 1990.
    [32] M. M. Chen and A. Faghri, ”An analysis of the vapor flow and the heat conduction
    through the liquid-wick and pipe wall in a heat pipe with single or multiple heat
    sources,” International Journal of Heat and Mass Transfer, vol. 33, 1990.
    [33] G. Carbajal, C. B. Sobhan, and G. P. Peterson, ”Numerical Study of Heat Pipe
    Heat Spreaders with Large Periodic Heat Input,” Journal of Thermophysics and
    Heat Transfer, vol. 20, no. 4, pp. 835-841, 2006.
    [34] G. Carbajal, C. B. Sobhan, G. P. “Bud”Peterson, D. T. Queheillalt, and H. N.
    G. Wadley, ”A quasi-3D analysis of the thermal performance of a flat heat pipe,”
    International Journal of Heat and Mass Transfer, vol. 50, no. 21, pp. 4286-4296,
    2007.
    [35] U. Vadakkan, J. Y. Murthy, and S. V. Garimella, ”Transient Analysis of Flat
    Heat Pipes,” ASME 2003 Heat Transfer Summer Conference, 2003.
    [36] U. Vadakkan, S. V. Garimella, and J. Y. Murthy, ”Transport in Flat Heat Pipes
    at High Heat Fluxes From Multiple Discrete Sources,” Journal of Heat Transfertransactions of The Asme, vol. 126, pp. 347-354, 2004.
    [37] R. Ranjan, ”Two-phase heat and mass transfer in capillary porous media,” Doctoral Dissertation, Purdue University, 2011.
    [38] R. Ranjan, J. Y. Murthy, S. V. Garimella, and U. Vadakkan, ”A numerical
    model for transport in flat heat pipes considering wick microstructure effects,”
    International Journal of Heat and Mass Transfer, vol. 54, no. 1, pp. 153-168,
    2011.
    [39] M. Famouri, ”Numerical Analysis Of Phase Change, Heat Transfer and Fluid
    Flow Within Miniature Heat Pipes,” Doctoral Dissertation, University of South
    Carolina, 2017.
    [40] Y. S. Chen, K. H. Chien, C. C. Wang, T. C. Hung, and B. S. Pei, ”A simplified
    transient three-dimensional model for estimating the thermal performance of the
    vapor chambers,” Applied Thermal Engineering, vol. 26, no. 17, pp. 2087-2094,
    2006.
    [41] G. Czerwiński and J. Wołoszyn, ”Numerical Study of a Cooling System Using
    Phase Change of a Refrigerant in a Thermosyphon,” Energies, vol. 14, no. 12,
    2021.
    [42] X. Wang, Y. Wang, H. Chen, and Y. Zhu, ”A combined CFD/visualization
    investigation of heat transfer behaviors during geyser boiling in two-phase closed
    thermosyphon,” International Journal of Heat and Mass Transfer, vol. 121, pp.
    703-714, 2018.
    [43] B. Fadhl, L. C. Wrobel, and H. Jouhara, ”Numerical modelling of the temperature
    distribution in a two-phase closed thermosyphon,” Applied Thermal Engineering,
    vol. 60, no. 1, pp. 122-131, 2013.
    [44] S. Shi, Y. Liu, I. Yilgor, and P. Sabharwall, ”A two-phase three-field modeling framework for heat pipe application in nuclear reactors,” Annals of Nuclear
    Energy, vol. 165, p. 108770, 2022.
    [45] B. Liu, ”Vapor Chamber External and Internal Factors Invetigation ” Doctoral
    Dissertation, University of California, 2020.
    [46] W. H. Lee, ”Pressure iteration scheme for two-phase flow modeling,” Multiphase
    Transport: Fundamentals, Reactor Safety, Application, pp. 407-432, 1980.
    [47] G. Carbajal, C. B. Sobhan, G. P. Peterson, D. T. Queheillalt, and H. N. G.
    Wadley, ”Thermal response of a flat heat pipe sandwich structure to a localized
    heat flux,” International Journal of Heat and Mass Transfer, vol. 49, no. 21, pp.
    4070-4081, 2006.
    [48] T. Kaya and J. Goldak, ”Three-dimensional numerical analysis of heat and mass
    transfer in heat pipes,” Heat and Mass Transfer, vol. 43, no. 8, pp. 775-785,
    2007.
    [49] N. Thuchayapong, A. Nakano, P. Sakulchangsatjatai, and P. Terdtoon, ”Effect
    of capillary pressure on performance of a heat pipe: Numerical approach with
    FEM,” Applied Thermal Engineering, vol. 32, pp. 93-99, 2012.
    [50] N. Pooyoo, S. Kumar, J. Charoensuk, and A. Suksangpanomrung, ”Numerical
    simulation of cylindrical heat pipe considering non-Darcian transport for liquid
    flow inside wick and mass flow rate at liquid-vapor interface,” International Journal of Heat and Mass Transfer, vol. 70, pp. 965-978, 2014.
    [51] N. Zhu and K. Vafai, ”Analysis of cylindrical heat pipes incorporating the effects
    of liquid-vapor coupling and non-Darcian transport - a closed form solution,”
    International Journal of Heat and Mass Transfer, vol. 42, no. 18, pp. 3405-3418,
    1999.
    [52] C. Mueller and P. Tsvetkov, ”A review of heat-pipe modeling and simulation
    approaches in nuclear systems design and analysis,” Annals of Nuclear Energy,
    vol. 160, p. 108393, 2021.
    [53] S. Zimmermann, R. Dreiling, T. Nguyen-Xuan, and M. Pfitzner, ”An advanced
    conduction based heat pipe model accounting for vapor pressure drop,” International Journal of Heat and Mass Transfer, vol. 175, p. 121014, 2021.
    [54] ANSYS, ”ANSYS Fluent Theory Guide,” ANSYS Inc., USA, 2017.
    [55] C. R. Kharangate and I. Mudawar, ”Review of computational studies on boiling
    and condensation,” International Journal of Heat and Mass Transfer, vol. 108,
    pp. 1164-1196, 2017.
    [56] W. Liu, J. Gou, Y. Luo, and M. Zhang, ”The experimental investigation of a
    vapor chamber with compound columns under the influence of gravity,” Applied
    Thermal Engineering, vol. 140, pp. 131-138, 2018.
    [57] Z. Huang, D. Li, J. zhao, and Q. Jian, ”Thermal and hydraulic analysis of ultrathin vapor chamber with copper columns considering Marangoni effect,” International Journal of Heat and Mass Transfer, vol. 184, p. 122343, 2022.
    [58] ANSYS, ”ANSYS Fluent User’s Guide,” ANSYS Inc., USA, 2017.
    [59] S. Ergun, ”Fluid flow through packed columns,” Chemical Engineering Progress,
    vol. 48, pp. 89-94, 1952.
    [60] C. Li and G. P. Peterson, ”The effective thermal conductivity of wire screen,”
    International Journal of Heat and Mass Transfer, vol. 49, no. 21, pp. 4095-4105,
    2006.
    [61] S. Sudhakar, ”Boilling in capillary-fed porous evaporators subject to high heat
    flux,” Doctoral Dissertation, Purdue University, 2021.
    [62] Z. Xu, Y. Zhang, B. Li, and J. Huang, ”Modeling the phase change process for
    a two-phase closed thermosyphon by considering transient mass transfer time
    relaxation parameter,” International Journal of Heat and Mass Transfer, vol.
    101, pp. 614-619, 2016.
    [63] M. Famouri, G. Carbajal, and C. Li, ”Transient analysis of heat transfer and fluid
    flow in a polymer-based Micro Flat Heat Pipe with hybrid wicks,” International
    Journal of Heat and Mass Transfer, vol. 70, pp. 545-555, 2014.
    [64] Y. Kim, J. Choi, S. Kim, and Y. Zhang, ”Effects of mass transfer time relaxation
    parameters on condensation in a thermosyphon,” Journal of Mechanical Science
    and Technology, vol. 29, no. 12, pp. 5497-5505, 2015.
    [65] R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher, ”A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method),”
    Journal of Computational Physics, vol. 152, no. 2, pp. 457-492, 1999.
    [66] M. A. Hanlon and H. B. Ma, ”Evaporation Heat Transfer in Sintered Porous
    Media,” Journal of Heat Transfer, vol. 125, no. 4, pp. 644-652, 2003.
    [67] S. Cho and Y. Joshi, ”Thermal Performance of Microelectronic Substrates With
    Submillimeter Integrated Vapor Chamber,” Journal of Heat Transfer, 2019.
    [68] A. Faghri and M. Buchko, ”Experimental and Numerical Analysis of LowTemperature Heat Pipes With Multiple Heat Sources,” Journal of Heat Transfer,
    vol. 113, no. 3, pp. 728-734, 1991.
    [69] Y. Koito, H. Imura, M. Mochizuki, Y. Saito, and S. Torii, ”Numerical analysis
    and experimental verification on thermal fluid phenomena in a vapor chamber,”
    Applied Thermal Engineering, vol. 26, no. 14-15, pp. 1669-1676, 2006.
    [70] C. Li and Q. Jian, ”Influences of copper columns on thermal hydraulic performance of the vapor chamber,” Heat and Mass Transfer, vol. 55, no. 11, pp.
    3065-3075, 2019.
    [71] M. M. Chen and A. Faghri, ”An analysis of the vapor flow and the heat conduction
    through the liquid-wick and pipe wall in a heat pipe with single or multiple heat
    sources,” International Journal of Heat and Mass Transfer, vol. 33, pp. 1945-
    1955, 1990.
    [72] S. Maneemuang, K. Vafai, N. L. Kammuang, P. Terdtoon, and P. Sakulchangsatjatai, ”Analysis of the optimum configuration for the capillary rise and the permeability of the fiber wick structure for heat removal in heat pipes,” Heat and
    Mass Transfer, vol. 57, no. 9, pp. 1513-1526, 2021.
    [73] D. Xie, Y. Sun, G. Wang, S. Chen, and G. Ding, ”Significant factors affecting heat
    transfer performance of vapor chamber and strategies to promote it: A critical
    review,” International Journal of Heat and Mass Transfer, vol. 175, p. 121132,
    2021.
    [74] M. Egbo, ”A review of the thermal performance of vapor chambers and heat sinks:
    Critical heat flux, thermal resistances, and surface temperatures,” International
    Journal of Heat and Mass Transfer, vol. 183, p. 122108, 2022.
    [75] S. Sudhakar, J. A. Weibel, and S. V. Garimella, ”A semi-empirical model for
    thermal resistance and dryout during boiling in thin porous evaporators fed by
    capillary action,” International Journal of Heat and Mass Transfer, vol. 181, p.
    121887, 2021.

    QR CODE