簡易檢索 / 詳目顯示

研究生: 王偉文
Benedictus Rahardjo
論文名稱: 精實六標準差於工業 5.0 的永續創新架構
Lean Six Sigma in Industry 5.0: A Sustainable Innovation Framework
指導教授: 王福琨
Fu-Kwun Wang
口試委員: 徐世輝
Shey-Huei Sheu
葉瑞徽
Ruey-Huei Yeh
杜志挺
Timon Du
羅士哲
Shih-Che Lo
耶利納
Yeneneh Tamirat
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 47
外文關鍵詞: Industry 5.0, Lean Six Sigma, Sustainable innovation framework, Lean 5.0 tools
相關次數: 點閱:75下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • One of the visions of Industry 5.0 is a human-centered design and value creation. In the quality field, the Lean Six Sigma (LSS) method has been proven to develop better production activities successfully. Embedding LSS into a human-oriented discipline can create a perfect combination of more human processes and a better result environment. The Lean concept adopts a people-oriented approach, cares about employees and customers, and emphasizes sustainable development. At the same time, Six Sigma philosophy and Industry 5.0 emphasize innovation to reduce process variation and achieve iterative process improvement. This study proposes a new sustainable innovation framework (SIF) through inductive and integrative approaches based on LSS methodology and Industry 5.0 technologies to achieve process excellence. Three Lean 5.0 tools, RIDEM (Requirements, Initiation, Design, Execution, and Monitoring) approach, and LSS 5.0 implementation steps are developed. These novel tools are designed to support the concept of actual SIF becoming more implementable. A case study has been conducted to illustrate how LSS 5.0 tools can be applied and their implementation results. The number of defective parts per million (DPPM) has been greatly reduced by more than 80%, directly saving NT$104,000. This study can make a significant contribution through the proposed framework, and the practical concepts are easier to implement in work organization.

    Abstract i Acknowledgment ii Table of Contents iii List of Figures v List of Tables vi Chapter 1 Introduction 1 1.1 Research background 1 1.2 Research objectives 3 1.3 Dissertation organization 3 Chapter 2 Literature Review 5 2.1 Industry 4.0 5 2.2 Industry 5.0 7 2.3 LSS in Industry 4.0 9 Chapter 3 Research Methodology 13 3.1 Definition of Sustainable Innovation Framework 13 3.2 Integration of Lean tools and Industry 5.0 technologies 16 3.3 Integration of Six Sigma methodology and Industry 5.0 concept 19 3.4 Linkage between SIF-RIDEM approach and LSS implementation 23 3.5 Steps for implementing Lean Six Sigma 5.0 25 Chapter 4 Case Study 29 Chapter 5 Conclusions and Future Research 40 5.1 Conclusions 40 5.2 Future research 41 References 42

    [1] Rojko, A.: Industry 4.0 concept: background and overview. Int. J. Interact. Mob. Technol. 11(5), 77-90 (2017). doi: 10.3991/ijim.v11i5.7072.
    [2] Martinez, F.; Jirsak, P.; Lorenc, M.: Industry 4.0. The end lean management. The 10th. International Days of Statistics and Economics, Prague, Czech Republic, pp. 1189-1197 (2016).
    [3] Sanders, A.; Elangeswaran, C.; Wulfsberg, J.: Industry 4.0 implies lean manufacturing: research activities in Industry 4.0 function as enablers for lean manufacturing. J. Ind. Eng. Manag. 9(3), 811-833 (2016). doi: 10.3926/jiem.1940.
    [4] De Man, J.C.; Strandhagen, J.O.: An Industry 4.0 research agenda for sustainable business models. Procedia CIRP 63, 721-726 (2017). doi: 10.1016/j.procir.2017.03.315.
    [5] Muller, J.: Enabling technologies for Industry 5.0 (2020). Retrieved from https://www.4bt.us/wp-cont ent/uploads/2021/04/INDUSTRY-5.0.pdf.
    [6] Breque, M.; De Nul, L.; Petridis, A.: Industry 5.0: towards a sustainable, human-centric and resilient European industry (2021). Retrieved from https://msu.euramet.org/current_calls/ documents/EC_Industry5.0.pdf.
    [7] Nahavandi, S.: Industry 5.0—a human-centric solution. Sustainability 11(16), 4371 (2019). doi: 10.3390/su11164371.
    [8] Rahardjo, B.; Wang, F.-K.; Yeh, R.-H.; Chen, Y.-P.: Lean manufacturing in Industry 4.0: a smart and sustainable manufacturing system. Machines 11(1), 72 (2023). doi: 10.3390/machines11010072.
    [9] Wang, F.-K.; Rahardjo, B.; Rovira, P.R.: Lean six sigma with value stream mapping in industry 4.0 for human-centered workstation design. Sustainability 14(17), 11020 (2022). doi: 10.3390/su141711020.
    [10] Lu, Y.: Industry 4.0: a survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 6, 1-10 (2017). doi: 10.1016/j.jii.2017.04.005.
    [11] Lasi, H.; Fettke, P.; Kemper, H.; Feld, T.; Hoffmann, M.: Industry 4.0. Bus. Inf. Syst. Eng. 6, 239-242 (2014). doi: 10.1007/s12599-014-0334-4.
    [12] Salkin, C.; Oner, M.; Ustundag, A.; Cevikcan, E.: A conceptual framework for industry 4.0. In Industry 4.0: Managing the digital transformation, pp. 3–22 (2018). doi: 10.1007/978-3-319-57870-5_1
    [13] Dalenogare, L.; Benitez, G.; Ayala, N.; Frank, A.: The expected contribution of Industry 4.0 technologies for industrial performance. Int. J. Prod. Econ. 204, 383-394 (2018). doi: 10.1016/j.ijpe.2018.08.019.
    [14] Costa, M.; Santos, L.; Schaefer, J.; Baierle, I.; Nara, E.: Industry 4.0 technologies basic network identification. Scientometrics 121(1), 977-994 (2019). doi: 10.1007/s11192-019-03216-7.
    [15] Acatech: Cyber-physical systems driving force for innovation in mobility, health, energy and production acatech position paper (2011).
    [16] Alcácer V.; Cruz-Machado, V.: Scanning the industry 4.0: a literature review on technologies for manufacturing systems. Eng. Sci. Technol. an Int. J. 22(3), 899-919 (2019). doi: 10.1016/j.jestch.2019.01.006.
    [17] Atwell, C.: Yes, Industry 5.0 is already on the horizon (2017). Retrieved from https://www.machinedesign.com/industrial-automation/yes-industry-50-already-horizon.
    [18] Rundle, E.: The 5th industrial revolution, when it will happen and how (2017). Retrieved from https://devops.com/5th-industrial-revolution-will-happen/
    [19] Shelzer, R.: What is Industry 5.0 — and how will it affect manufacturers (2017). Retrieved from https://blog.gesrepair.com/industry-5-0-will-affect-manufacturers/
    [20] Muller, J.: Enabling technologies for Industry 5.0: Results of a workshop with Europe’s technology leaders. European Commission-Directorate General for Research and Innovation (2020). doi: 10.2777/082634.
    [21] Anass, C.; Amine, B.; Ibtissam, E.H.; Bouhaddou, I.; Elfezazi, S.: Industry 4.0 and lean six sigma: Results from a pilot study. In International conference on integrated design and production, pp. 613–619 (2021).
    [22] Anvari, F.; Edwards, R.; Agung, H.: Lean six sigma in smart factories based on Industry 4.0. Int. J. Emerg. Trends Energy Env. 1, 1–26 (2021).
    [23] Buer, S.V.; Semini, M.; Strandhagen, J.O.; Sgarbossa, F.: The complementary effect of lean manufacturing and digitalization on operational performance. Int. J. Prod. Res. 59 (7), 1976–1992 (2021). doi: 10.1080/00207543.2020.1790684.
    [24] Tissir, S.; Cherrafi, A.; Chiarini, A.; Elfezazi, S.; Bag, S.: Lean six sigma and Industry 4.0 combination: Scoping review and perspectives. Total Qual. Manag. Bus. Excell. 34(3-4), 261–290 (2022). doi: 10.1080/14783363.2022.2043740.
    [25] Antony, J.; McDermott, O.; Powell, D.; Sony, M.: The evolution and future of lean six sigma 4.0. The TQM J. 35(4), 1030-1047 (2022). doi: 10.1108/TQM-04-2022-0135.
    [26] Kumar, P.; Bhadu, J.; Singh, D.; Bhamu, J.: Integration between lean, six sigma and Industry 4.0 technologies. Int. J. Six Sigma Compet. Advant. 13(1/2/3), 19 (2021). doi: 10.1504/IJSSCA.2021.120224.
    [27] Sodhi, H.: When Industry 4.0 meets lean six sigma: A review. Ind. Eng. J. 13(1), 1–12 (2020). doi: 10.26488/IEJ.13.1.1214.
    [28] Vinodh, S.; Antony, J.; Agrawal, R.; Douglas, J.A.: Integration of continuous improvement strategies with Industry 4.0: A systematic review and agenda for further research. The TQM J. 33(2), 441–472 (2020). doi: 10.1108/TQM-07-2020-0157.
    [29] Gupta, S.; Modgil, S.; Gunasekaran, A.: Big data in lean six sigma: A review and further research directions. Int. J. Prod. Res. 58(3), 947–969 (2020). doi: 10.1080/00207543.2019.1598599.
    [30] Butt, J.: A strategic roadmap for the manufacturing industry to implement industry 4.0. Designs 4(2), 11–31 (2020). doi: 10.3390/designs4020011.
    [31] Rifqi, H.; Zamma, A.; Souda, S.B.: Lean 4.0, six sigma-big data toward future industrial opportunities and challenges: A literature review. Adv. Smart Soft Comput. 1188, 201–210 (2021). doi: 10.1007/978-981-15-6048-4_18.
    [32] Nicoletti, B.: Lean six sigma and digitize procurement. Int. J. Lean Six Sigma 4(2), 184–203 (2013). doi: 10.1108/20401461311319356.
    [33] Sony, M.: Design of cyber physical system architecture for industry 4.0 through lean six sigma: Conceptual foundations and research issues. Prod. Manuf. Res. 8(1), 158–181 (2020). doi: 10.1080/21693277.2020.1774814.
    [34] Sordan, J.E.; Oprime, P.C.; Pimenta, M.L.; Da Silva, S.L.; González, M.O.A.: Contact points between lean six sigma and Industry 4.0: A systematic review and conceptual framework. Int. J. Qual. Reliab. Manag. 39(9), 2155–2183 (2022). doi: 10.1108/IJQRM-12-2020-0396.
    [35] Jayaram, A.: Lean six sigma approach for global supply chain management using Industry 4.0 and IIoT. Contemporary Computing and Informatics (IC3I), 2nd International Conference on IEEE, pp. 89-94 (2016).
    [36] Dogan, O.; Gurcan, O.F.: Data perspective of lean six sigma in Industry 4.0 Era: A guide to improve quality. Proceedings of the International Conference on Industrial Engineering and Operations Management, Paris (2018).
    [37] Arcidiacono, G.; Pieroni, A.: The revolution lean six sigma 4.0. Int. J. Adv. Sci. Eng. Inf. Technol. 8(1), 141-149 (2018). doi: 10.18517/ijaseit.8.1.4593.
    [38] Rahardjo, B.; Wang, F.-K.; Lo, S.-C.; Chu, T.-H.: A sustainable innovation framework based on lean six sigma and Industry 5.0. Arab. J. Sci. Eng. (2023). doi: 10.1007/s13369-023-08565-3.
    [39] Rosin, F.; Forget, P.; Lamouri, S.; Pellerin, R.: Impacts of Industry 4.0 technologies on lean principles. Int. J. Prod. Res. 58(6), 1644-1661 (2020). doi: 10.1080/00207543.2019.1672902.
    [40] Lyu, Z.; Lin, P.; Guo, D.; Huang, G.Q.: Towards zero-warehousing smart manufacturing from zero-inventory just-in-time production. Robot. Comput. Integr. Manuf. 64, 101932 (2020). doi: 10.1016/j.rcim.2020.101932.
    [41] Frazier, W.E.: Metal additive manufacturing: A review. J. Mater. Eng. Perform. 23, 1917-1928 (2014). doi: 10.1007/s11665-014-0958-z.
    [42] Tortorella, G.L., et al.: Digitalization of maintenance: Exploratory study on the adoption of Industry 4.0 technologies and total productive maintenance practices. Prod. Plan. Control (2023). doi: 10.1080/09537287.2022.2083996.
    [43] Mohan, R.; Roselyn, P.; Uthra, A.; Devaraj, D.; Umachandran, K.: Intelligent machine learning based total productive maintenance approach for achieving zero downtime in industrial machinery. Comput. Ind. Eng. 157, 107267 (2021). doi: 10.1016/j.cie.2021.107267.
    [44] Tortorella, G.L.; Fogliatto, F.S.; Cauchick-Miguel, P.A.; Kurnia, S.; Jurburg, D.: Integration of Industry 4.0 technologies into total productive maintenance practices. Int. J. Prod. Econ. 240, 108224 (2021). doi: 10.1016/j.ijpe.2021.108224.
    [45] Martinelli, M.; Lippi, M.; Gamberini, R.: Poka yoke meets deep learning: A proof of concept for an assembly line application. Appl. Sci. 12(21), 11071 (2022). doi: 10.3390/app122111071.
    [46] Vinod, M.; Devadasan, S.; Sunil, D.: Six Sigma through poka-yoke: A navigation through literature arena. Int. J. Adv. Manuf. Technol. 81, 315-327 (2015). doi: 10.1007/s00170-015-7217-9.

    QR CODE